
Virtual Ring Routing Trends

Dahlia Malkhi1, Siddhartha Sen2, Kunal Talwar1, Renato Werneck1, and Udi
Wieder1

1 Microsoft Research Silicon Valley
{dalia,kunal,renatow,uwieder}@microsoft.com

2 Princeton University
sssix@cs.princeton.edu

Abstract. Virtual Ring Routing (VRR) schemes were introduced in the
context of wireless ad hoc networks and Internet anycast overlays. They
build a network-routing layer using ideas from distributed hash table
design, utilizing randomized virtual identities along a ring. This makes
maintenance practical when nodes may enter or leave.
Previously, VRR was evaluated over a small wireless network and through
medium-scale simulations, exhibiting remarkably good performance. In
this paper, we provide a formal analysis of a family of VRR-like schemes.
The analysis provides insight into a variety of issues, e.g., how well does
VRR perform compared with brute force shortest paths routing? What
properties of an underlying network topology make VRR work well?
Our analysis is backed by extensive simulation over a variety of topolo-
gies. Whereas previous works evaluated VRR over fairly small networks
(up to 200 nodes), we are interested in scaling the simulations so as to
exhibit asymptotic trends. Simulating network sizes beyond 220 results
in a memory explosion: In some of the topologies of interest, such as
a 2-dimensional plane, the total memory taken up by routing tables is
Ω(N3/2) for an N -node network. We devise a simulation strategy that
builds necessary information on the fly using a Luby and Rackoff pseudo-
random permutation, leading to simulations at a scale of 232 nodes.

1 Introduction

Virtual Ring Routing (VRR) schemes were deployed for wireless ad hoc net-
works [4], for anycast Internet routing [5], and for scaling Ethernet [8]. Deviat-
ing drastically from any known method of compact routing [7], these practical
systems borrow ideas from distributed hash table overlays, and use virtual ad-
dresses (aka flat labels) for routing. The vision behind these schemes is to have
node identities that contain no structural information about the network. Hence,
they support mobility naturally, and impose less administrative burden in as-
signing addresses. Additionally, they are easy to maintain, in that adding and
removing nodes from the network is efficient, and incurs updates in only a small
fraction of the nodes. In contrast to the well-founded theory of compact routing,
there exists no rigorous analysis of VRR schemes. This paper tackles the formal
analysis of a family of VRR schemes and provides insight into a variety of issues.

DHT overlays assign virtual identities (e.g., in the range [0..1], or integers) to
nodes and maintain connections between nodes based on their virtual id’s. When
used for forming a network layer, DHT overlay techniques must be modified
for the following reason. In an overlay network, a node p simply stores the
name of each overlay neighbor q in a local overlay routing table; the lower-
level networking layer facilitates the connection between p and q. However, in
the absence of a network layer, it is not enough for p to remember q’s name in
order to connect to it.

VRR schemes such as [4, 5] resolve this issue by maintaining routing in-
formation between p and q along an entire physical path between them. This
means that every node along a physical path from p to q has a routing table
entry with the destination q in it, storing the next hop toward q. We note that
other techniques that adapt DHT routing to the network layer exist, but are of
no relevance here, e.g., write an entire path on the packet header at p [11], or
route through landmark gateways [12, 10, 6].

To prevent confusion between routes at the different layers, we introduce
some conventions.

Glossary: The entire node-by-node path determined by a routing scheme is
called the actual routing path. It is induced by a sequence of hops, each hop
between virtual neighbors in the virtual overlay. The physical path toward
a virtual neighbor is carried along a physical segment, potentially composed
of multiple nodes.
Routing efficiency is measured by its stretch: Given a pair of nodes, their
routing stretch is the ratio between their actual routing path length and
their shortest path length.

The overlay topology utilized in [4, 5] is a simple ring. Hence, overlay paths
may take a linear number of virtual hops from a source to a destination. For
example, say that we have a ring of nodes numbered [1..30]. The virtual ring
route from node 5 to 15 goes through nodes 5, 6, ..., 15 in succession. Each of
these virtual hops is carried along a physical segment in the network. Thus,
routing toward a virtual destination using overlay virtual hops could incur a
linear stretch.

Fortunately, VRR allows greedy hops which considerably improve the routing
efficiency. Imagine going along a physical path from node 5 to 6 in the above
virtual path. Quite likely, this path crosses other physical paths, say 10 to 11,
20 to 21 and 28 to 29. When we reach the node en-route from 5 to 6 which is
on the path from 10 to 11, VRR greedily chooses to route toward 11 instead of
continuing toward 6.

Thus far, the advantage of using path intersection in greedy routing in this
manner was evaluated over a small wireless network and through medium-scale
simulations, exhibiting remarkably good performance.

1.1 Technical Approach

The high level intuition provided in [4] for constant expected stretch of VRR in
a two-dimensional space with uniformly scattered nodes is as follows. The rout-
ing table at each node is populated with expected O(

√
N) randomly selected

destinations. Hence, a greedy hop to the final target is expected after visiting
O(
√

N) physical nodes. Unfortunately, this intuition is not easily turned into a
rigorous analysis because of the subtle dependencies between the routing tables
of neighboring nodes in the topology. Rather, our analysis builds from the fun-
damental probability of path intersection. For example, consider the Euclidean
grid of dimension d. For reasonable selection of shortest paths between randomly
chosen endpoints, intersection occurs with probability in O(N− d−2

d). For the two-
dimensional grid, this is constant. We call this the intersection coefficient, and
denote it by p.

Two factors contribute to bound the routing path length. First, consider the
last 2c/

√
p virtual identities preceding the target, for some constant c. They

determine a collection of c/
√

p physical segments with disjoint endpoints, that
are hence independently assigned in the network. Any additional independently
chosen segment intersects one of the segments in the collection with probability
1 − (1 − p)(c/

√
p). A collection of c/

√
p additional, independently selected, seg-

ments intersects the first collection with probability 1−
(
(1− p)(c/

√
p)

)(c/
√

p) ≈
1 − e−c2

, hence the expected collection size until intersection is in O(1/
√

p).
Intuitively, this bounds the number of physical segments that are traversed to
completion in the actual routing path to expected O(1/

√
p). A more precise ar-

gument, which considers the inter-dependencies among virtual hops in a routing
path, is given in the body of the paper; it gives O(log N/

√
p) expected number

of completed physical segments.
So far, we have bounded the expected number of virtual hops that are made

to completion in an actual routing path. We did not count the nodes in physical
segments that are interrupted by greedy steps. Here, intuition suggests that a
greedy step shortens the virtual distance to the target by an expected factor of
two. However, we were unable to provide a formal proof for this property, due
to the intricate dependency between the conditions imposed by a path traversed
up to some point and the possible remaining virtual identity mappings.

Instead, we slightly modify the scheme to assist with the analysis. We mod-
ified the VRR scheme to allow a greedy hop only when, indeed, it reduces the
virtual distance to the target by at least a constant factor α. Extensive simula-
tion indicates that the modification has marginal (and even somewhat negative)
effect on the actual routing complexity, e.g., for α = 2. We can then bound the
number of physical segments which terminate with a greedy hop by O(logα(N)).
Proving this for the original VRR scheme remains an open challenge.

1.2 Contribution

Leveraging the analysis we highlight above, we make the following contributions.

– Our analysis relates the path intersection coefficient p with an expected over-
all routing stretch of O(log N/

√
p). We prove that this is tight up to a loga-

rithmic factor, with a matching lower bound of Ω(1/
√

p). Using this insight,
one can predict the stretch of VRR schemes over any network topology,
as the physical network topology determines path intersection probability
p. For example, in a two-dimensional grid, two pairs of randomly selected
endpoints have intersecting shortest-paths with constant probability. The
expected stretch in the two dimensional grid is in O(log N).
More generally, for the Euclidean grid of dimension d, intersection occurs
with probability in O(N− d−2

d), and the expected stretch is in O(N
d−2
2d log n).

– We readily determine the relationship between the overall routing table mem-
ory and the stretch. The network topology determines the expected number
of overlay paths that pass through a certain node, and thus, the expected
routing table size at a node. For example, in a d-dimensional grid, routing
tables size is in O(N1/d).
Memory-stretch tradeoffs have been studied extensively in the theory of com-
pact routing, and we can draw a comparison with VRR here. Methods were
suggested that can achieve better characteristics: [1] gives a O(k)-stretch
name-independent routing with O(k2N1/k log3 N) routing table resources
per node for arbitrary graphs, and [2] gives a name-independent scheme for
planar graphs with constant stretch and only polylogarithmic memory at
each node. The advantage of VRR schemes is their simplicity and maintain-
ability.

– We also extend our experiments to two overlay variants, using the same VRR
methodology. One is a ring where each node has outgoing links to its k ring-
successors, for a parameter k. The other is the ring with k − 1 successors,
and a k-th neighbor is selected from the virtual ring using a “small-world”
distribution.

Our analysis is backed by extensive simulation over the two, three and four
dimensional grids. Whereas previous works evaluated VRR over fairly small
networks (up to 200 nodes), we are interested in scaling the simulations so as to
exhibit asymptotic trends. However, directly simulating network sizes beyond 220

results in a memory explosion: In some of the topologies of interest, such as a 2-
dimensional plane, the total memory taken up by routing tables is Ω(N3/2) for an
N -node network. Rather, we devise a simulation strategy that builds necessary
information on the fly using a Luby-Rackoff pseudo-random permutation, leading
to simulations at a scale of 232 nodes.

2 Problem Description

We describe the VRR scheme in greater detail. The system is modeled as an
undirected graph G = (V,E). V is a set of |V | = N nodes. Edges (u, v) ∈

E indicate that u and v know each other, are physically connected and can
communicate directly.

In VRR, every node v has a unique identifier id(v) drawn uniformly at ran-
dom from a range R � N of integers. This defines a natural order on the
identifiers and for the rest of the paper, we assume the identifiers simply define
a permutation on [N]. The node to id mapping is known to all nodes in the
system. Define the successor of a node v, denoted succ(v), as the node u whose
identity is (id(u) + 1) mod N .

Virtual routes are maintained from every node to its k successors in the
identity space, where k is a parameter of the scheme. In our analysis to simplify
things we assume that k = 1, i.e. the virtual topology is just the ring. For
identities i, j, define dist(i, j) to be the number of edges in the shortest path
from i to j in this virtual overlay network. Thus for the ring case k = 1, dist(i, j)
is j − i if i < j, and N − (i− j) otherwise. In the simulations we tested the case
of larger k.

The virtual topology induces a virtual path between every two nodes. These
paths are realized in the physical network via a set of predetermined physical
segments between each node u and succ(u). These actual physical paths are
ideally shortest paths but are not necessarily so. Denote the nodes in this physical
path as PS(u, succ(u)). Now, every node v has a local routing table with entries
〈dst, nxt〉 for each path PS(w, succ(w)) that contains v (with dst = succ(w)),
such that nxt is the next hop after v in the segment PS(w, succ(w)). The method
in which these paths are chosen and maintained is not within the scope of this
paper. The work in [4],[5] suggests ways of choosing these paths and argues they
are easy to maintain in the face of insertions and deletions.

VRR employs a greedy routing (GR) strategy over the virtual identity space.
When a message with destination T is injected at a source S, an initial packet
header 〈target : T, intermediate target : succ(S)〉 is formed.

When a node u receives a packet with header 〈T, IT 〉, it performs the follow-
ing:

– If u has a routing-table entry 〈T ′, h′〉, such that T ′ is closer to T than IT (in
the virtual distance dist(·, T)), then u modifies the header by overwriting
intermediate-target with T ′. If there is more than one such T ′, u picks the
one closest to T . It forwards the packet to h′.

– Otherwise, u forwards to h, where 〈IT, h〉 appears in u’s routing table.

The entire node-to-node routing path is called the actual routing path. In this
work, we are interested in analyzing the expected length of the actual routing
path, over the choices of identities for a variety of initial graphs.

3 Stretch Analysis

We first give some intuition on the routes generated by GR. Suppose that GR is
invoked from s to t. The first routing table lookup performed by GR at s finds
an intermediate target m0 with identity between s and t. This intermediate

target may be (s + 1) or some node u such that s lies on a path PS(u, succ(u))
and dist(u, t) < dist(s + 1, t). In this case, s chooses the routing table entry
corresponding to target succ(u).

In this case GR continues to the next table lookup, which is invoked at a
node w following s en route to m0. Note that w must have m0 in its routing
table, or w is m0 itself. Therefore, GR continues with an intermediate target no
farther than m0. However, a change of intermediate target may occur. First, if
w is m0, then it will find among m0 +1,m0 +2, ...,m0 +k an intermediate target
m1 closer to t. We call this a non-greedy transition. Second, w may find in its
routing table an entry m1 closer than m0 to t. Again, this happens when w is
on a path leading to such m1. In this case, GR moves to a route leading towards
m1. We call this a greedy transition.

The route to m1 may get interrupted again, and so on. Finally, a route to
the target t itself will be found, at which point the intermediate target becomes
fixed.

More formally, we have the following definition. For source-destination pair
(s, t), let D(s, t) denote m0,m1, ...,mc = t the sequence of intermediate targets
set by GR. We say that a transition from mi to mi+1 is non-greedy if it was set
at mi from amongst mi + 1, . . . ,mi + k, and it is greedy otherwise.

We will upper bound the actual routing path length by bounding the size of
D(s, t) in a conservative way: if Diam is the diameter of the network, the length
of the actual routing path between s and t is at most Diam · |D(s, t)|.

Generally, a greedy hop at step j may depend on the first j hops. Obviously,
it must be caused by a route toward a target closer to the destination than the
intermediate target at step j − 1 is. Additionally, it must be caused by a route
that does not go through any of the first j − 1 hops. In order to handle these
weak dependencies, we introduce a slight generalization of the GR procedure
called GR′. The idea in GR′ is to choose a greedy hop only if this change is a
significant improvement. We do this by introducing a parameter α to the first
routing rule as follows:

– If u has a routing-table entry 〈T ′, h′〉, such that T ′ is closer to T than IT by
factor of α or more, i.e. dist(T ′, T)/dist(IT, T) < α−1, then u modifies
the header by overwriting intermediate-target with T ′. If there is more than
one such T ′, u picks the one closest to T . It forwards the packet to h′.

Note that GR corresponds to special case of GR′ with α = 1.We now prove
some bounds on the expected actual path length of GR′. First we observe that
the number of greedy virtual hops is at most logarithmic.

Lemma 1. For any source s and target t, the number of greedy transitions in
GR′(s, t) is O(logα(N)).

Proof. We bound the number of greedy transitions by observing that in a greedy
transition from mi to mi+1, the destination mi+1 is closer to t by a factor α.
Hence, after at most logα(dist(s, t)) greedy transitions we reach the target.

It remains to bound the number of non-greedy transitions. Recall that D(s, t)
denotes the total number of intermediate targets seen by the algorithm and that
we bound the path length by bounding the size of D(s, t). The key observation
in this section is that the bound is parameterized by the likelihood of path
intersection, formally defined below.

First recall the definition of intersection coefficient. We refer to a physical
segment between two points chosen uniformly at random as a random virtual
hop.

Definition 1. Let p = p(N) be such that two independent random virtual hops
intersect with probability p. We say that the intersection coefficient of the set of
paths is p.

Now suppose that we were concerned about the probability that a random
virtual hop intersects at least one of l other independent random virtual hops.
The following definition defines conditions under which such probabilities can
be estimated.

Definition 2. A set of virtual hops (s1, t1), . . . , (sl, tl) are said to be almost
mutually exclusive if for a random virtual hop (s, t), the probability that PS(s, t)
intersects one of the paths PS(si, ti) is at least 1

2 lp.

Note that the expected number of i’s such that PS(s, t) intersects PS(si, ti) is
in fact lp. However, these events are not independent, and not mutually exclusive.

Definition 3. Let p = p(N) be such that for a constant c and for any l ∈ [1, 1
cp],

the probability that ` random virtual hops are not almost mutually exclusive is at
most polynomially small in the size of the network. Then we say that the group
intersection coefficient is p.

Lemma 2. With high probability, for all pairs s, t it holds that |D(s, t)| can be
bounded by O(α log(1/p)+logα N√

p), where the probability is taken over the choice of
mapping id’s to nodes.

Proof. We first give some intuition for the proof. The number of greedy hops is
clearly at most O(logα N). Consider the 1√

p virtual hops (t − j − 1, t − j) for
j ∈ [1, 1√

p] closest to the destination t in the ring. If we reached one of these
virtual hops within the first 1√

p non-greedy hops in the routing, then we would
get a bound of O(1√

p +logα N) on |D(s, t)|. What is the likelihood that the first
1√
p non-greedy hops in D(s, t) do not reach this set? For this to happen, each

of the 1√
p completed non-greedy hops must avoid hitting one of the 1√

p virtual
hops close to the destination. Since this gives us O(1

p) pairs of virtual hops, and
each pair intersects with probability p, this avoidance is unlikely. Of course there
are dependencies to be taken care of and we formalize the argument below.

For any r, call the virtual hops (t−j−1, t−j) for j ∈ [1, r] the r-last hops. Let
k, l be parameters to be chosen later. We will argue that with high probability,

within l virtual hops when routing from s to t, the current intermediate target
is within distance αk in the virtual space.

Let m0,m1, . . . ,ml be the sequence of first l routing destinations set by
GR. Of these, some r < logα N are chosen due to a greedy hop, let these be
mi1 , . . . ,mir

. Let a configuration C be defined by a set of at most logα N indices
i1, . . . , ir. For a fixed configuration C, we shall bound the probability that any
sequence m0,m1, . . . ,ml has not hit the αk-last hops.

Let D′(s, t) be the list of mi’s such that i 6∈ {ij , ij − 1, ij + 1}. Let l′ =
b 1

2 |D
′(s, t)|c. Clearly, l′ > l

3 −3 logα N . D′(s, t) contains at least l′ disjoint pairs
(mi,mi + 1) such that mi − 1,mi,mi + 1,mi + 2 are all in D(s, t).

The k-last hops consists of k/2 disjoint virtual hops. Thus except with poly-
nomially small probability, these k/2 virtual hops are almost-mutually exclusive.
Thus the virtual hop (mi,mi+1) intersects one of the the k-last hops with prob-
ability at least kp/4 (k is taken to be smaller than 1

cp). Moreover, this event for
(mi,mi+1) depends only on the random assignment of the virtual identifies mi

and mi+1 to physical nodes, and is therefore independent of the corresponding
event for (mj ,mj + 1), for any j : |j − i| > 1.3 Thus the probability that for a
fixed configuration C, a prefix m0, . . . ,ml exists that satisfies C but does not
intersect the k-last hops is bounded by

(1− kp

4
)l′

Unless the prefix m0, . . . ,ml has already hit the αk-last hops, any intersection
with the k-last hops is a greedy step that GR′ would have taken. Thus the above
bounds the probability that for a fixed C, the prefix m0, . . . ,ml defined by C
has not reached the αk-last hops.

We next bound the number of configurations. There are
(

l
r

)
ways of choosing

the indices i1, . . . , ir, and since r ≤ logα N , the number of configurations is at
most

logα N

(
l

logα N

)
.

On the other hand, for |D(s, t)| to be greater than l+αk, the prefix m0, . . . ,ml

must not hit the αk-last hops. Thus the probability

Pr[|D(s, t)| > l + αk)] ≤ logα N

(
l

logα N

)
(1− lp

4
)l/3−3 logα N .

The claim follows by plugging in the value of l = O(logα N√
p) and k = O(log(1/p)√

p).
ut

3 There is in fact a small dependency here: since the mapping is a permutation, mi

cannot be mapped to the same location as mj . However, this excludes at most O(l)
locations for mi and mi+1, and hence conditioning changes the probabilities by at
most a (1− l

N
) factor, which is negligible and ignored for the rest of the proof.

Properties of the d-dimensional Grid

In this section we identify the intersection coefficient of the grid for a natural
set of paths. Consider a d-dimensional grid with nd nodes, each node can be
identified by a d-dimensional vector in [0, n − 1]d. Let s = (s1, . . . , sd) and
t = (t1, . . . , td) be two nodes. There are many shortest paths between them.
Natural candidates for a collection of paths are paths that follow more or less the
l2 shortest path between the points. The paths we analyze, and use to drive the
simulation are crude approximations. We randomly sample an intermediate node
w = (w1, . . . , wd) where each wi is uniformly sampled in [si, ti] and then route
through w as follows: first route from from s to w by fixing the coordinates one
after the other, i.e. first go to (w1, s2, . . . , sd) and so on. Once w is reached, route
to t by fixing the coordinates in reverse order, i.e. first go to (w1, w2, . . . , td) and
so on. The node w is called the intermediate routing node of the path. Denote
by p(c) = cn−(d−2). The next bound states that there is a way to chose c as a
function of d such that p is the intersection coefficient of the network.

Lemma 3. For every d there is c such that for every n, the intersection coeffi-
cient of the nd grid is p = cn−(d−2).

Proof. The proof is by induction on d. For d = 2, p(c) = c so we need to show
that the probability two virtual hops intersect is at least a constant independent
of n. Intuitively this should hold because with constant probability both paths
are roughly diagonals in the two-dimensional grid and thus intersect. A formal
(and rather crude) argument is as follows: say the first source–target pair is
(s(1)

1 , s
(1)
2) and (t(1)1 , t

(1)
2). Similarly the second pair is (s(2)

1 , s
(2)
2) and (t(2)1 , t

(2)
2).

With probability 3−6 it holds that s
(1)
1 , s

(1)
2 ≤ n/3 and t

(1)
1 , t

(1)
2 ≥ 2n/3, and their

intermediate node (w(1)
1 , w

(1)
2) satisfies that w

(1)
1 , w

(1)
2 ∈ [n/3, 2n/3]. In other

words the path s(1) → t(1) is a diagonal. Similarly with probability 3−6 the path
s(2) → t(2) is the crossing diagonal, i.e. s

(2)
1 , t

(2)
2 ≤ n/3 and t

(2)
1 , s

(2)
2 ≥ 2n/3, and

w
(2)
1 , w

(2)
2 ∈ [n/3, 2n/3]. If both these events occur then the paths intersect.

Now assume d > 2. Let w(1) and w(2) denote the intermediate hops. If w(1)

and w(2) agree in the first (d−2) co-ordinates, then the probability of intersection
is at least c using the two-dimensional case. Since w(1) and w(2) are drawn from
the same probability distribution, the probability that they agree on the first (d−
2) co-ordinates is at least n−(d−2): the collision probability for a distribution is
maximized when it is uniform, in which case we get the n−(d−2) bound. Moreover,
it is easy to check that the collision probability is at least (an)−(d−2) for a
constant a. The claim follows. ut

Lemma 4. For every d there is c such that for every n, the group intersection
coefficient of the nd grid is p = cn−(d−2).

Proof. The proof is very similar to the previous lemma. For d = 2, there is
nothing to prove since l is at most 1.

Now assume d > 2. Let w(1), . . . , w(l) denote the intermediate hops of the l
virtual hops, and let w(∗) denote the intermediate hop for (s, t). If w(∗) agrees

with one of the w(i)’s in the first (d − 2) co-ordinates, then the probability of
intersection is at least c using the two-dimensional case. Since w(1), . . . , w(l) are
drawn from the same probability distribution and l < 1

cp they span at least l/2
different values for the first (d−2) co-ordinates with high probability. The claim
follows. ut

Lower Bound

Lemma 5. If dist(s, t) = 1
10
√

p then with probability at least 0.99 the size of
D(s, t) is at least 1

10
√

p .

Proof. We calculate the probability there is a greedy hop in the path. In total
there are 1

100p pairs of paths. Each of them intersects with probability p so on
expectation there are 1/100 intersections. Markov’s inequality implies that the
probability there is at least one greedy hop is at most 0.01. ut

We can also show the following result, the proof of which is omitted from this
extended abstract:

Lemma 6. For 1 < s < t < N − 1, we have

E[D(s, t + 1)] ≥ min{E[D(s, t)],
1

10
√

p
}.

The above two lemmas imply that for randomly chosen s and t the expected size
of D(s, t) is Ω(1√

p). Thus our upper bound is tight up to logarithmic factors.

4 Simulation

We simulate a family of VRR schemes over d-dimensional grids. The challenging
aspect of our simulation is scaling. In order to demonstrate asymptotic trends,
we want to test networks of considerable sizes. This cannot be done naively.
The fundamental routing step in VRR scheme involves a routing-table lookup.
Naively simulated, this requires maintaining O(n× routing table size) informa-
tion. For some of the topologies we consider, this prohibits simulating networks
beyond 220 nodes (≈ 230 entries ≈ 8GB memory). Though this is already quite
sizable, we devised a simulation technique that can scale even higher. We first
describe the simulation technique, and then present the result.

4.1 Simulation Framework

The underlying (physical) networks in our simulation are d-dimensional grids
with n nodes on each side (and N = nd nodes in total). Nodes have integral
physical identifiers from 0 to nd − 1, assigned so as to allow a node’s position in
the grid to be easily retrieved from its identifier (and vice-versa).

In our simulation, we take sp(u, v), a shortest path, as the physical segment
PS(u, v) between neighboring nodes u and v in the virtual space. In general,
these paths are not unique in a d-dimensional cube; we pick paths that we
analyzed in the previous section.

Suppose we are computing the route to a (virtual) target t and let v be the
current vertex. VRR schemes need to examine v’s routing table and find the
intermediate target t′ that is the closest (in the virtual space) predecessor of t
in the ring.

Memory constraints prevent us from storing the routing tables explicitly
when simulating very large networks. Instead, we check all possible candidates
for t′ (starting at t, then t−1, then t−2, and so on) until we find one that would
actually be an intermediate target in v’s routing table. For each candidate t′, we
must check if there is a physical segment that crosses v. Such a segment would
have as endpoints t′ and a virtual neighbor of t′, denoted by s′. Let S(t′) be the
set of virtual sources s′ such that (s′, t′) is a physical segment. Note that S(t′) is
just {t′−1} in a simple ring, but in other overlay topologies we experiment with,
it is a set. For each s′ ∈ S(t′), we can check in O(d) time whether v belongs to
the physical segment from s′ to t′. If it does, we can stop: t′ is the best entry in
v’s routing table.

Implicit mapping. Even storing the mapping of nodes to virtual identities (with
quick reverse lookup) is quite costly for sizable networks, and we avoid that.
Our simulation picks as the virtual identifiers a (pseudo-)random permutation
of [0, nd−1]. We do not maintain the permutation explicitly in memory. Instead,
we keep it implicitly with the Luby-Rackoff scheme [9], which works as follows.

Assume node identifiers have exactly 2k bits (i.e., N = 22k). We must define a
permutation π : {0, 1}2k → {0, 1}2k, so that a node with physical identifier x has
virtual identifier π(x). An identifier x = (L,R) can be seen as the concatenation
of its first k bits (L) and last k bits (R). Define π(x) as π(L,R) = (R, f(R) ⊕
L), where f : {0, 1}k → {0, 1}k is an auxiliary pseudorandom function. It is
easy to see that π(x) produces a permutation of all 2k-bit strings. When f is
sampled from a family of one-way functions, Luby and Rackoff proved that it
suffices to iterate π four times, sampling a fresh function each time, to obtain
a pseudo-random permutation. Therefore, to convert a physical identifier x into
the corresponding virtual identifier, we simply compute π∗(x) = π(π(π(π(x)))).
To convert a virtual identifier to a physical identifier, we use the inverse function
π−1(x) = π−1(L,R) = (f(L)⊕R,L), also iterated four times.

To determine f(X) (where X is a k-bit string), our implementation concate-
nates X with a user-defined 32-bit seed s, calculates the 128-bit MD5 hash of
the resulting string, and discards all but the first k bits of the result. These
operations (in particular the MD5 computation) are costly in practice. To speed
up the simulation, we use two levels of caching. We remember the first C pairs
(x, π∗(x)) that we evaluate, as well as the result of every f(X) computation we
ever perform (the corresponding table, with

√
N entries, is small enough to fit

in memory). We used C = 2.5 · 108 in our experiments.

4.2 Results

We start our experiments with the most basic version of VRR, in which each
vertex has a single virtual neighbor in the ring (i.e., |S(v)| = 1 for every v).
Table 1 shows the results obtained for grids with 2, 3, and 4 dimensions and
various sizes. Every entry in the table was computed from 1000 routes. The
endpoints of each route are two nodes picked uniformly at random. Each route
uses a different pseudorandom mapping between physical and virtual nodes.

Table 1. Simple ring simulation results. Columns are: Grid dimensionality; network
size; average nodes on shortest path; average nodes on actual routing path; 99th per-
centile of nodes on actual routing path; 99th percentile stretch; aggregate stretch.

dim nodes shrt. nodes stretch
path avg 99th 99th aggr.

2 224 2685 7679 18548 18.75 2.86
226 5539 15494 37511 26.37 2.80
228 10720 31141 70889 23.36 2.90
230 22113 61979 141664 21.80 2.80
232 43456 120237 300127 23.02 2.77

3 212 16 94 212 34.01 5.83
218 65 736 1714 51.00 11.35
224 255 5797 13986 112.76 22.75
230 1031 45180 111140 270.81 43.82

4 220 42 1316 3200 118.05 31.23
224 86 5295 12844 301.34 61.86
228 170 21087 49399 504.08 123.89
232 342 85614 193431 1002.67 250.10

For each instance size, we report the average shortest path length and the
average actual routing path length. The ratio between these two is the aggregate
stretch, which is our main performance measure and is reported in the last col-
umn. For reference, we also report the 99th percentile of the actual path length
(over all 1000 routes).

Recall that the intersection coefficient is p ∈ O(N− d−2
d), and the expected

stretch is proportional to 1/
√

p. Hence, for the two-dimensional case, the ex-
pected stretch is constant; for d = 3, when we grow n by a factor of 26, we
expect the average stretch to grow by a factor (26)1/6 = 2; and for d = 4, when
growing n by factor 24, the stretch is expected to grow by factor (24)1/4 = 2.
Table 1 indeed demonstrates these trends.

Other Overlay Structures. We considered two variations of the simple VRR ring.
As suggested in the original VRR work, we vary the number c of ring successors
to which each node maintains connections.

Additionally, we considered a variation in which the overlay topology has
sublinear hop diameter. The idea here is that even without the effect of path
intersection and greedy hops, the stretch is bounded by the routing complexity
of the overlay network. Specifically, we introduce a small change, one that would
not impair the spirit and practical value of VRR scheme. Borrowing from small
world extensions of ring overlays [3], we replace the c-th neighbor of a node v
with v − 2j , where j is an integer picked uniformly at random from the range
[dlog2 ce, (log2 N)− 1].

Table 2 shows the average aggregate stretch (over 1000 seeds) for the various
topologies.

Table 2. Simulation results with varying overlay topologies, with 1, 2, and 5 virtual
neighbors. The small world variations are denoted with a ‘∗’.

network neighborhood size
dim nodes 1 2 2∗ 5 5∗

2 224 2.86 2.24 2.25 1.73 1.68
226 2.80 2.16 2.16 1.76 1.66
228 2.90 2.24 2.29 1.82 1.74
230 2.80 2.23 2.20 1.78 1.72
232 2.77 2.20 2.23 1.80 1.74

3 212 5.83 3.72 3.99 2.47 2.42
218 11.35 6.90 7.45 4.01 3.99
224 22.75 13.34 13.72 7.30 7.21
230 43.82 26.42 24.10 12.51 12.69

4 220 31.23 18.55 17.72 8.98 8.81
224 61.86 34.56 27.70 16.46 15.46
228 123.89 69.58 42.73 31.93 27.27
232 250.10 136.60 66.98 63.12 48.26

Increasing the size of virtual neighborhoods reduces the average stretch, since
the intersection coefficient increases correspondingly. The asymptotic trends re-
main the same with increased neighborhood sizes (on a simple ring). The effect of
small world links become noticeable only with four dimensions, and fairly large
network size. This is when the polylogarithmic effect of small world routing starts
dominating the simple ring stretch of O(Nd−2/2d) = O(N1/4).

Modified Greedy Routing. Finally, we examine the effect of modifying the greedy
hop criterion as suggested in our analysis section above. We introduce into the
VRR scheme a parameter α, and allow a greedy hop to occur only when the
intermediate routing target is improved by a factor α. When α = 1 (as in the
experiments reported so far), the routing algorithm performs every greedy step
it can. For larger values of α, a greedy step (i.e., a change of the intermediate

target) happens only if the gap to the final target (in the virtual space) is reduced
by factor α.

Table 3 shows the average aggregate stretch (over 1000 routes) for three
values of α: 20, 2, and 1. The results show that setting α to 2 has little effect on
the performance of the routing algorithm. begintable[thbp]

Table 3. Average aggregate stretch with different α values.

network greedy factor (α)
dim nodes 20 2 1

2 224 3.67 2.95 2.86
226 3.62 2.86 2.80
228 3.65 2.96 2.90
230 3.69 2.92 2.80
232 3.54 2.80 2.77

3 212 8.31 6.10 5.83
218 18.14 12.63 11.35
224 38.63 25.14 22.75
230 77.17 49.97 43.82

4 220 55.14 34.11 31.23
224 108.56 68.85 61.86
228 218.14 138.10 123.89
232 426.98 279.61 250.10

As a final note, while running the experiments above, we observed that in a
typical path most of the hops in a route are close (in the virtual space) to the
target. Let the median target of a route with h nodes be the intermediate target
of the algorithm when the (h/2)-th node is visited. With α = 1, on average the
median target was less than log2 N hops away from the target in two dimensions.
Even in higher dimensions, the average gap was always smaller than log2 N .

5 Conclusions

We have theoretically and empirically analyzed Virtual Ring Routing. We show
that for a 2-dimensional grid, VRR indeed gives expected path length which is at
most O(log N) times the diameter. On the other hand, for a d-dimensional grid,
we show that the expected path length is at least Ω(N

d−2
2d) times the diameter

of the graph. We note that for the two-dimensional case, our bound only shows
a bound of O(Diam · log N) on the routing path length. Empirically, VRR does
not seem to exhibit good locality properties. It would be interesting to investigate
this question further.

References

1. I. Abraham, C. Gavoille, and D. Malkhi. On space-stretch trade-offs: Upper
bounds. In ACM Symposium on Parallel Algorithms and Architectures (SPAA),
July 2006.

2. I. Abraham, C. Gavoille, and D. Malkhi. Compact routing for graphs excluding
a fixed minor. In 19th Intl. Symposium on Distributed Computing (DISC 05),
September 2005.

3. L. Barrière, P. Fraigniaud, E. Kranakis, and D. Krizanc. Efficient routing in net-
works with long range contacts. In DISC ’01: Proceedings of the 15th Interna-
tional Conference on Distributed Computing, pages 270–284, London, UK, 2001.
Springer-Verlag.

4. M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron. Virtual
ring routing: Network routing inspired by DHTs. In ACM annual conference of
the Special Interest Group on Data Communication (SIGCOMM), pages 351–362,
2006.

5. M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and S. Shenker.
ROFL: Routing on flat labels. In ACM annual conference of the Special Interest
Group on Data Communication (SIGCOMM), September 2006.

6. B.-N. Cheng, M. Yuksel, and S. Kalyanaraman. Orthogonal rendezvous routing
protocol for wireless mesh networks. In IEEE International Conference on Network
Protocols, 2006.

7. C. Gavoille. Routing in distributed networks: Overview and open problems. ACM
SIGACT News - Distributed Computing Column, 32(1):36–52, March 2001.

8. C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: a scalable ethernet
architecture for large enterprises.

9. M. Luby and C. Rackoff. How to construct pseudorandom permutations and
pseudorandom functions.

10. Y. Mao, F. Wang, L. Qiu, S. S. Lam, and J. M. Smith. S4: Small state and
small stretch routing protocol for large wireless sensor networks. In 4th USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2007.

11. H. Pucha, S. M. Das, and Y. C. Hu. Imposed route reuse in ad hoc network routing
protocols using structured peer-to-peer overlay routing. IEEE Transactions on
Parallel and Distributed Systems, 2006.

12. C. Westphal and J. Kempf. A compact routing architecture for mobility. In
MobiArch ’08: Proceedings of the 3rd international workshop on Mobility in the
evolving internet architecture, pages 1–6, New York, NY, USA, 2008. ACM.

