
Collaborative, Privacy-Preserving Data Aggregation
at Scale

Haakon Ringberg∗, Benny Applebaum∗, Michael J. Freedman∗, Matthew Caesar†, Jennifer Rexford∗

∗Princeton University, †University of Illinois at Urbana-Champaign

ABSTRACT
Combining and analyzing data collected at multiple locations is
critical for a wide variety of applications, such as detecting and
diagnosing malicious attacks or computing an accurate estimate of
the popularity of Web sites. However, legitimate concerns about
privacy often inhibit participation in collaborative data-analysis
systems. In this paper, we design, implement, and evaluate a
practical solution for privacy-preserving collaborationamong a
large number of participants. Scalability is achieved through a
“semi-centralized” architecture that divides responsibility between
a proxy that obliviously blinds the client inputs and adatabasethat
identifies the (blinded) keywords that have values satisfying some
evaluation function.

Our solution leverages a novel cryptographic protocol thatprov-
ably protects the privacy of both the participants and the key-
words. For example, if web servers collaborate to detect source
IP addresses responsible for denial-of-service attacks, our protocol
would not reveal the traffic mix of the Web servers or the iden-
tity of the “good” IP addresses. We implemented a prototype of
our design, including an amortized oblivious transfer protocol that
substantially improves the efficiency of client-proxy interactions.
Our experiments show that the performance of our system scales
linearly with computing resources, making it easy to improve per-
formance by adding more cores or machines. For collaborative di-
agnosis of denial-of-service attacks, our system can handle millions
of suspect IP addresses per hour when the proxy and the database
each run on two quad-core machines.

1. INTRODUCTION
Many important data-analysis applications must combine and

analyze data collected by multiple parties. Such distributed data
analysis is particularly important in the context of security. For ex-
ample, victims of denial-of-service (DoS) attacks know they have
been attacked but cannot easily distinguish the malicious source IP
addresses from the good users who happened to send legitimate
requests at the same time. Since compromised hosts in a botnet
often participate in multiple such attacks, victims could potentially
identify the bad IP addresses if they combined their measurement
data [34]. Cooperation is also useful for Web clients to recognize
they have received a bogus DNS response or a forged self-signed
certificate, by checking that the information they receivedagrees
with that seen by other clients accessing the same Web site [29,
39]. Collaboration is also useful to identify popular Web content
by having Web users—or proxies monitoring traffic for an entire
organization—combine their access logs to determine the most fre-
quently accessed URLs [1]. In this paper, we present the design,
implementation, and evaluation of an efficient, privacy-preserving
system that supports these kinds of data-analysis operations.

Today, these kinds of distributed data-analysis applications lack
privacy protections. Existing solutions often rely on a trusted (typ-
ically centralized) aggregation node that collects and analyzes the
raw data, thereby learning both the identity and inputs of partici-
pants. There is good reason to believe this inhibits participation.
ISPs and Web sites are notoriously unwilling to share operational
data with one another, because they are business competitors and
are concerned about compromising the privacy of their customers.
Many users are understandably unwilling to install software from
Web analytics services such as Alexa [1], as such software would
otherwise track and report every Web site they visit. Unfortunately,
even good intentions do not necessarily translate to good security
and privacy protections, only too-well demonstrated by thefact
that large-scale data breaches have become commonplace [30]. As
such, we believe that many useful distributed data-analysis appli-
cations will not gain serious traction unless privacy can beensured.

Fortunately, many of these collaborative data-analysis applica-
tions have a common pattern, such as computing set intersection,
finding so-calledicebergs(items with a frequency count above a
certain threshold), or identifying items that in aggregatesatisfy
some other statistical property. We refer to this problem asprivacy-
preserving data aggregation(PDA). Namely, each participantpj

has an input set of key-value tuples,〈ki, vi,j〉, and the protocol
outputs a keyki if and only if some evaluation functionf(∀j|vi,j)
is satisfied. For example, the botnet anomaly-detection application
is an instance of the iceberg problem where the goal is to detect
keys that occur more than some thresholdτ times across then par-
ties. In this scenario, the keyski refer to IP addresses, each value
vi,j is 1, andf is defined to be

Pn
j=1

vi,j ≥ τ (implemented, in
fact, as simply keeping a running sum per key). In other words,
such a protocol performs the equivalent of a database join (union)
across each participant’s input (multi)set, and outputs those IP ad-
dresses that appear more thanτ times. In our system, keys can
either be arbitrary-length bitstrings or can also be drawn from a
limited domain (e.g., the set of valid IP addresses). However, we
restrict our consideration of values to those drawn from a more re-
stricted domain—such as an alphanumeric score from 1 to 10 orA
to F—a limitation for privacy reasons we explain later. Thisf could
as easily perform other types of frequency analysis on keys,such as
median, mode, or dynamically setting the thresholdτ based on the
set of inputs—for example, if there exists some appropriate“gap”
between popular and unpopular inputs—as opposed to requiring τ
be seta priori and independent of the inputs.

Informally, PDA should provide two privacy properties: (1)Key-
word privacyrequires that no party should learn anything aboutki

if its corresponding values do not satisfyf . (2) Participant privacy
requires that no party should learn which key inputs (whether or not
the key remains somehow blinded prior to satisfyingf) belongs to

1

which participant. In our example of collaborating DoS victims,
keyword privacy means nobody learns the identity of good IP ad-
dresses or which Web sites they frequent, and participant privacy
means a Web site need not worry that its mix of clients would be
revealed. In our example of collaborating Web clients, the privacy
guarantees mean that a Web user need not worry that other users
know what Web sites he accesses, or whether he received a bo-
gus DNS response or a forged certificate. We believe these privacy
properties would be sufficient to encourage participants tocollab-
orate to their mutual benefit, without concern that their privacy (or
the privacy of their clients) would be compromised. Our goal, then,
is to design a system that provably guarantees these properties, yet
is efficient enough to be used in practice.

Ideally, we would like a system that can handle hundreds or thou-
sands of participants generating thousands of key-value tuples. Un-
fortunately, fully-distributed solutions do not scale well enough,
and fully-centralized solutions do not meet our privacy require-
ments. Simple techniques like hashing input keys [12, 2], while
efficient, cannot ensure keyword and participant privacy. In con-
trast, the secure multi-party computation protocols from the cryp-
tographic literature [42, 9, 25, 21, 11, 10, 20, 23, 3] would allow
us to achieve our security goals, but are not practical at thescale
we have in mind. [40] has a similar intent to our work, but pro-
vides much weaker privacy properties (e.g., keys are known by the
system) and was not evaluated in a distributed setting. Finally, few
of these systems have ever been implemented [23, 13, 3], let alone
operate in the real world [4] and at scale. So, a meta-goal of our
work is to help bring multi-party computation to life.

In this paper, wedesign, implement, and evaluatea viable al-
ternative: a “semi-centralized” system architecture, andassociated
cryptographic protocols, that provides privacy-preserving data ag-
gregation without sacrificing efficiency. Rather than having a sin-
gle aggregator node, the data analysis is split between two sepa-
rate parties—aproxy and adatabase. The proxy plays the role of
obliviously blinding client inputs, as well as transmitting blinded
inputs to the database. The database, on the other hand, builds a
table that is indexed by the blinded key. For each row of this ta-
ble whose values satisfyf , the database shares this row with the
proxy, who unblinds the key. The database subsequently publishes
its non-blinded data for that key.

The resulting semi-centralized system provides strong privacy
guaranteesprovided that the proxy and the database do not col-
lude. In practice, we imagine that these two components will be
managed either by the participants themselves that do not wish to
see their own information leaked to others, perhaps even on aro-
tating basis, or even third-party commercial or non-profit entities
tasked with providing such functionality. For example, in the case
of cooperative DoS detection, ISPs like AT&T and Sprint could
jointly provide the service. Or, perhaps even better, it could be of-
fered by third-party entities like Google (which already plays a role
in bot and malware detection [15]) or the EFF (which has funded
anonymity tools such as Tor [7]), who have no incentive to col-
lude. Such a separation of trust appears in several cryptographic
protocols [6], and even in some natural real-world scenarios, such
as Democrats and Republicans jointly comprising election boards
in the U.S. political system. It should be emphasized that the proxy
and database are not treated astrusted parties: we only assume that
they will not collude. Indeed, jumping ahead, our protocol does not
reveal sensitive information to either party.

Using a semi-centralized architecture greatly reduces operational
complexity and simplifies the liveness assumptions of the system.
For example, clients can asynchronously provide their key-value
tuples without our system requiring any complex scheduling. De-

spite these simplifications, the cryptographic protocols necessary to
provide strong privacy guarantees are still non-trivial. Specifically,
our solution makes use of oblivious pseudorandom functions[27,
10, 16], amortized oblivious transfer [26, 17], and homomorphic
encryption with re-randomization.

We formally prove that our system guarantees keyword and par-
ticipant privacy. We first show a protocol that is robust in the
honest-but-curiousmodel (where, informally, each party can per-
form local computation on its own view in an attempt to break pri-
vacy, but still faithfully follows the protocol). Then, we show how,
with a few modifications to our original protocol, to defend against
any coalition of malicious participants. In addition, the protocols
are robust in the face of collusion between either proxy/database
and any number of participants.

The remainder of the paper is organized as follows. Section 2de-
fines our system goals and discusses why prior techniques arenot
sufficient. Section 3 describes our PDA protocols and sketches the
proofs of their privacy guarantees. Section 4 describes ourimple-
mentation, and Section 5 evaluates its performance. We conclude
the paper in Section 6.

2. DESIGN GOALS AND STATUS QUO
This section defines our goals for practical, large-scale privacy-

preserving data aggregation (PDA), and we discuss how priorpro-
posals failed to meet these requirements. We then expand on our
security assumptions and privacy definitions.

2.1 Design Goals
In the privacy-preserving data aggregation (PDA) problem,a col-

lection of participants (orclients) may autonomously make obser-
vations aboutvalues(vi) associated withkeys(ki). These observa-
tions may be, for example, the fact that an IP address is suspected
to have performed some type of attack (through DoS, spam, phish-
ing, and so forth), or the number of participants that associate a
particular credential with a server. The system jointly computes a
two-column input tableT. The first column ofT is a set comprised
of all unique keys belonging to all participants (thekey column).
The second column is comprised of a valueT[ki] that is the aggre-
gation or union of all participant’s values forki (thevalue column).
The system then defines a particular functionf to be evaluated over
each row’s value(s). For simplicity, we focus our discussion on the
simple problem of over-threshold set intersection forf : If clients’
inputs of the form〈ki, 1〉 are aggregated asT[ki] ← T[ki] + 1, is
T[ki] ≥ τ?

A practical PDA system should provide the following:

• Keyword privacy:We say a system satisfieskeyword privacy
if, given the above aggregated tableT, at the conclusion of
the protocol all involved parties learn only the keyski whose
corresponding aggregate valueT[ki] ≥ τ . In addition, we
might also have parties learn the valuesT[ki], i.e., the en-
tire value column ofT, even if the corresponding keys re-
main unknown. We discuss later why we may reveal the
keyless value column (a histogram of frequencies in the over-
threshold set intersection example) in addition to those over-
threshold keys.

• Participant privacy: We say a system satisfiesparticipant
privacyif, at the conclusion of the protocol, nobody can learn
the inputs{〈ki, vi,j〉} of participantpj other thanpj himself
(except for information which is trivially deduced from the
output of the function). This is formally captured by showing
that the protocol leaks no more information than an ideal im-
plementation that uses a trusted third party. This convention

2

is standard in secure multi-party computation; further details
can be found in [14].

• Efficiency: The system should scale to large numbers of par-
ticipants, each generating and inputting large numbers of ob-
servations (key-value tuples). The system should be scalable
both in terms of the network bandwidth consumed (com-
munication complexity) and the computational resources
needed to execute the PDA (computational complexity).

• Flexibility: There are a variety of computations one might
wish to perform over each key’s valuesT[ki], other than the
sum-over-threshold test. These may include finding the max-
imum value for a given key, or checking if the median of a
row exceeds a threshold. Rather than design a new protocol
for each functionf , we prefer to have a single protocol that
works for a wide range of functions.

• Lack of coordination: Finally, the system should operate
without requiring that all participants coordinate their efforts
to jointly execute some protocol at the same time, or even
all be online around the same time. Furthermore, no set of
participants should be able to prevent others from executing
the protocol and computing their own results (i.e., a liveness
property).

As we discuss next, existing approaches fail to satisfy one or more
of these goals.

2.2 Limitations of Existing Approaches
Having defined these five goals for PDA, we next consider sev-

eral possible solutions from the literature. We see that prior se-
cure multi-party computation protocols achieve strong privacy at
the cost of efficiency, flexibility, or ease of coordination.On the
other hand, simple hashing or network-layer anonymizationap-
proaches fail to satisfy our privacy requirements. Our protocol,
which leverages insights from both approaches, combines the best
of both worlds. Table 1 summarizes the discussion in this section.

Set-Intersection Protocols. Freedmanet al. [11] proposed
a specially-designed secure multi-party computation protocol to
compute set intersection between the input lists of two parties. It
represented each party’s inputs as the roots of an encryptedpoly-
nomial, and then had the other party evaluate this encryptedpoly-
nomial on each of its own inputs. While asymptotically optimized
for this setting, a careful protocol implementation found two sets
of 100 items each took 213 seconds to execute (on a 3 GHz Intel
machine) [13]. Kissner and Song [20] extended and further im-
proved this polynomial-based protocol for a multi-party decentral-
ized setting, yet their computational complexity remainsO(nℓ2)
and communication complexity isO(n2ℓ), wheren is the num-
ber of participants andℓ is the number of input elements per party.
Furthermore, after a number of pairwise interactions between par-
ticipants, the system needed to coordinate a group decryption pro-
tocol between all parties. Hence, this prior work on set-intersection
faces scaling challenges on large sets of inputs or participants, and
it also requires new protocol design for each small variant of the
set-intersection or threshold set-intersection protocol.

Secure Multi-Party Computations using Garbled Circuits. In
1982, Yao [42] proposed a general technique for computing any
two-party computation privately, by building a “garbled circuit” in
which one party encodes the function to be executed and his own
input, and the other party obliviously evaluates her inputson this

circuit. Very recently, the Fairplay system [23, 3] provided a high-
level programming language for automatically compiling specified
functions down into garbled circuits and generating network proto-
col handlers to execute them. While such a system would provide
the privacy properties we require and offer the flexibility that hand-
crafted set-intersection protocols lack, this comes at a cost. These
protocols are even more expensive in both computation and com-
munication, requiring careful coordination as well.

Hashing Inputs. Rather than building fully decentralized
protocols—with the coordination complexity and quadraticover-
head (inn) this entails—we could aggregate data and compute re-
sults using a centralized server. One approach is to simply have
clients first hash their keys before submitting them to the server
(e.g., using SHA-256), so that a server only seesH(ki), notki it-
self [2]. While it may be difficult to find a pre-image of a hash
function, brute force attacks are still always possible: Inour col-
laborating intrusion detection application, for instance, a server can
simply compute the hash values of all four billion IP addresses and
build a simple lookup table. Thus, while certainly efficient, this
approach fails to achieve either of our privacy properties.An al-
ternative that prevents such a brute-force attack would be for all
participants (clients) to coordinate and jointly agree on some secret
keys, then use instead akeyedpseudorandom function on the input
key, i.e., Fs(ki). This would satisfy keyword privacy, until a single
client decides to shares with the server, a brittle condition for sure.

Network Anonymization through Proxying. In the previous
proposal, the server received inputs directly from clients. Thus,
the server was always able to associate a row of the database with
a particular client, whether or not its key is known. One solution
would be to simply proxy a client’s request through one or more
intermediate proxies that hides the client’s identity (e.g., its own
IP address), as done in onion routing systems such as Tor [7].Of
course, this solution still does not achieve keyword privacy.

Although the prior approaches have their limitations, theyalso
offer important insights that inform our design. First, a more
centralized aggregation architecture avoids distributedcoordination
and communication overhead. Second, proxying can add partic-
ipant privacy when interacting with a server. And third, a keyed
pseudorandom function (PRF) can provide keyword privacy. Now,
the final insight to our design is,rather than have all participants
jointly agree on the PRF secrets, let it be chosen by and remain
known only to the proxy. After all, the proxy is already trusted
not to expose a client’s identity to the server (database), so let’s
trust it not to expose this secrets to the database as well. Thus,
prior to proxying (roughly) the tuple〈Fs(ki), vi〉, the proxy exe-
cutes a protocol with a client toblind its input keyki with Fs. This
blinding occurs in such a way that the client does not learns and
the proxy does not learnki.1 This completes the loop, having a
proxy play a role in providing both keyword and participant pri-
vacy, while the database offers flexibility in any computation over
a key’s valuesT[ki] and scalability through traditional replication
and data-partitioning techniques (e.g., consistent hashing [19]).

2.3 Security Assumptions and Definitions
We now motivate and clarify some design decisions related to

our security assumptions and privacy definitions. Roughly speak-
ing, our final protocol defends againstmalicious participantsand
non-colludinghonest-but-curiousdatabases and proxies.

1We note that oblivious pseudorandom function evaluation had
been previously used in the set intersection context in [10]and [16].

3

Keyword Participant Lack of
Approach Privacy Privacy Efficiency Flexibility Coordination

Private Set Intersection Yes Yes Poor No No
Garbled-Circuit Evaluation Yes Yes Very Poor Yes No

Hashing Inputs No No Very Good Yes Yes
Network Anonymization No Yes Very Good Yes Yes

This paper Yes Yes Good Yes Yes

Table 1: Comparison of proposed schemes for privacy-preserving data aggregation

Honest-but-curious parties. In our model, both proxy and
database are expected to act ashonest-but-curious(also called
semi-honest) participants. That is, each party can perform local
computation on its own view in an attempt to break privacy, but
is assumed to still faithfully follow the protocol when interacting
with other parties. We believe this model is very appropriate for
our semi-centralized system architecture. In many deployments,
the database and proxy may be well-known and trusted to act on
their good intentions to the best of their abilities, as opposed to sim-
ply another participant amongst a set of mutually distrustful par-
ties. Thus, other than fully compromising a server-side component
and secretly replacing it with an actively malicious instance, data
breaches are not possible in this model, as participants never see
privacy-comprising data in the first place. In addition, thehonest-
but-curious model is one of the two standard security modelsin
multi-party computation protocols—the other being the (obviously
stronger) assumption of full malicious behavior. Unfortunately, se-
curity against fully malicious behavior comes at a great cost, as
each party needs to prove at each step of the protocol that it is faith-
fully obeying it. For example, the proxy would need to prove that
it does not omit any submitted inputs while proxying, nor falsely
open blinded keys at the end of the protocol; the database would
need to prove that it faithfully aggregates submitted values, and
doesn’t omit any rows inT that satisfyf . These proofs, typically
done in zero-knowledge, greatly complicate the protocol and im-
pact efficiency.

We will, however, present a protocol that is robust against any
coalition of malicious participants. After all, the same trust as-
sumptions that hold for the proxy and database does not extend to
the potentially large number of participants.

Security against coalitions. Another important aspect of secu-
rity is the ability to preserve privacy even when several adversarial
players try to break security by sharing the information they gained
during the protocol. In this aspect, we insist on providing security
against any coalition of an arbitrary number of participants together
with the database. This is essential as otherwise the database can
perform a Sybil attack [8],i.e., create many dummy participants
and use their views, together with his own view, to reveal sensitive
information. Similarly, we require security against any coalition of
the proxy and the participants. On the other hand, in order tohave
an efficient and scalable system, we are willing to tolerate vulnera-
bility against a coalition of the database and the proxy, which could
otherwise break participant and keyword privacy.

Releasing the value column. Our protocol releases those keys
whose values satisfyf , but the database also learns the entire value
column (T[ki], ∀i), even though it learns no additional information
about the correspondingki’s. This asymmetric design was chosen
as revealing allT[ki] may be seen as a privacy violation.

That said, in other settings it may be acceptable to release the
entire value column, so that all parties see identical information.
This also serve another practical purpose, as it may be hard to fully

specifyf a priori to collecting clients’ inputs. For example, how
should an anomaly detection system choose the appropriate fre-
quency thresholdτ? In some attacks, 10 observations about a par-
ticular IP address may be high (e.g., suspected phishing), while in
others, 1000 observations may be necessary (e.g., for bots partici-
pating in multiple DoS attacks). Furthermore, a dataset maynatu-
rally expose a clear gap between frequency counts of normal and
anomalous behavior; the very reason data operators like to “play”
with raw data in the first place.

We also note that the acceptable set of input values and the sys-
tem’s security assumptions has some bearing here. If the domain
D of possible values is large, a client can try to “mark” a keyk
by submitting it together with an uncommon valuew ∈ D. If a
value column that somehow includesw is revealed, the client can
discover other clients’ values for that same key. That said,a simi-
lar problem exists when the value column is not released and one is
concerned about collusions between a client and database (who can
search for theT[k] that includesw). This problem does not arise
when the domain is relatively small (e.g., when values are grades
over some limited scale).

We mention that this asymmetry and/or security issue can be
completely eliminated by first having participants encrypttheir val-
ues under the public keys of both proxy and database, and by then
using additional cryptographic protocols for the aggregation of the
values. While these tools are relatively expensive, the structure of
our system allows us to employ them only for the two-party case
(for the proxy and database) which results in a significant efficiency
improvement over other more distributed solutions.

3. OUR PDA PROTOCOL
In this section, we describe our protocol and analyze its secu-

rity. Section 3.1 describes a simplified version of the protocol that
achieves somewhat weaker security properties. This version will
be extended to support a stronger notion of security in Section 3.2.
Our protocol employs several standard cryptographic tools(e.g.,
public-key encryption schemes, pseudorandom functions, and the
oblivious evaluation of a pseudorandom function). We will elab-
orate on these tools and suggest concrete instantiations inSec-
tion 3.3. More details about the extended protocol and sketches
of formal security proofs are given in the Appendix.

3.1 The Basic Protocol
Our protocol consists of four basic steps (see Figure 1). In the

first two steps, the proxy interacts with the participants tocollect
the blinded keys together with their associated values encrypted
under the database’s public-key, and then passes these encrypted
values on to the database. Then, in the third step, the DB aggre-
gates the blinded keys together with the associated values in a table
and decides which rows should be revealed according to a prede-
fined functionf . Finally, the DB asks the proxy to unblind the cor-
responding keys. Since the blinding schemeFs is not necessarily
invertible, the revealing mechanism uses some additional informa-
tion that is sent during the first phase.

4

!"#$%&'"()* !#+,-* .")"/"01*

!"#$%&'()*%+,#

-%.#)+*/,#0#

1"#$&234#56%&+.#

789:;.:0<<=#

789:7$>?:0<<#

@"#$&234#.6+A.#

B5)+A6A#)+*/,.C#

89#&6(2D6&.#;.:0<#

%+A#%AA.#,2#,%B56#

E"#89#A6,6&F)+6.#

)G#&2H#(2/+,#I#J#

K"#$&234#&6(2D6&.#

0#G&2F#7$>?:0<#

Figure 1: High-level system architecture and protocol.Fs is a keyed hash function whose secret keys is known only to the proxy.

• Parties: Participants, Proxy, Database.

• Cryptographic Primitives : A pseudorandom functionF ,
whereFs(ki) denotes the value of the function on the input
ki with a keys. A public-key encryptionE, whereEK(x)
denotes an encryption ofx under the public key K.

• Public Inputs: The proxy’s public keyPRX, the database’s
public keyDB.

• Private Inputs. Participant: A list of key-value pairs
〈ki, vi〉. Proxy: key s of PRFF and secret key forPRX;
Database:secret key forDB.

1. Each participant interacts with the proxy as follows. Foreach
entry 〈ki, vi〉 in the participant’s list, the participant and the
proxy run a sub-protocol for oblivious evaluation of the PRF
(OPRF). At the end of this protocol, the proxy learns nothing
and the participant learns only the valueFs(ki) (and nothing
else, not even the keys of the PRF). The participant com-
putes the valuesEDB(Fs(ki)), EDB(vi), andEDB(EPRX(ki)),
and it sends them to the proxy. (The last entry will be used
during the revealing phase.) The proxy adds this triple to a
list and waits until most/all participants send their inputs.

2. The proxy randomly permutes the list of triples and sends
the result to the DB. The DB uses its private key to decrypt
all the entries of each triple. Now, it holds a list of triples

of the form
D

Fs(ki), vi, EPRX(ki)
E

. The DB inserts these

values into a table which is indexed by the (blinded) key
Fs(ki). At the end, the DB has a table of entries of the form
D

Fs(ki), T[ki], E[ki]
E

, whereT[ki] is (in general) a list of

all thevi’s that appeared with this key (or simply the number
of times a client inputtedki in the case of threshold set inter-
section), andE[ki] is a list of values of the formEPRX(k).

3. The DB uses some predefined functionf to partition the ta-
ble into two parts:R, which consists of the rows whose keys
should be revealed, andH, which consists of the rows whose
keys should remain hidden. Then, it sends all the rows ofR

to the proxy.

4. The proxy goes over the received tableR and replaces all the
encryptedEPRX(ki) entries with their decrypted keyki. Then
it publishes the updated table.

Variants. One may consider several variants in which different
information is released to the participants by the database. For
example, it is possible to release only thekeyski which are cho-
sen by the functionf without the corresponding valuesT[ki]. On
the other extreme, the DB can release more data by publishingthe
pairs(ki, T[ki]) for the ki’s that are selected byf , together with
the valuesT[ki] of the keys that were not selected byf without

the corresponding keys (i.e., the entriesT[ki] of the tableH). This
might be useful to the participants and, in some scenarios, the ad-
ditional information might not constitute a privacy violation (in the
“real-world” sense). Consider, for example, the case wherethe val-
ues are always one,i.e., the participants only want to increment a
counter for some key. In this case, the tableR simply consists of
keys and their frequencies, andH is simply a frequency table of all
the unrevealed keys.

Security Guarantees. We claim that this protocol guarantees
privacy against the following attacks:

Coalition of honest-but-curious participants.Consider the view
of an honest-but-curious participant during the protocol.Due to the
security of the OPRF sub-protocol, a single participant sees only
a list of pseudorandom values of the formFs(ki), and therefore
it learns nothing beyond the output of the protocol (formally, this
view can be easily simulated by using truly random values). The
same holds for a coalition of participants.

In fact, this protocol achieves a reasonable level of security
against malicious participants as well. Recall that the interaction of
the proxy with a participant is completelyindependentof the inputs
of other participants. Hence, even if the participants are malicious,
they still learn nothing about the data of other honest participants.
Furthermore, even malicious participants will be forced tochoose
their inputsindependentlyof the inputs of other honest participants.
For example, they cannot duplicate the input of some other hon-
est participant. (Similar security definitions were also considered
in [26, 16].) However, malicious participants can still violate the
correctnessof the above protocol. This issue will be fixed in the
extended protocol.

Honest-but-curious proxy. The proxy’s view consists of three
parts: (1) the view during the execution of the OPRF protocol—this
gives no information due to the security of the OPRF; (2) the tuples
that the participants send—these values are encrypted under the
DB’s key and therefore reveal no information to the proxy; and (3)
the values that the DB sends during the last stage of the protocol—
these are just key-value pairs (encrypted under the proxy’skey)
that should be revealed anyway, and thus they give no additional
information beyond the actual output of the protocol.

Honest-but-curious coalition of proxy and participants. The
above argument generalizes to the case where the proxy colludes
with honest-but-curious participants. Indeed, the joint view of such
coalition reveals nothing about the inputs of the honest participants.

Honest-but-curious database.The DB sees a blinded list of keys
encrypted under his public keyDB, without being able to relate the
blinded entries to their owners. For each blinded keyFs(ki), the
DB also sees the list of its associated valuesT[ki] and encryptions
of the keys under the proxy’s keyEPRX(k). Finally, the DB also

5

sees the output of the protocol. The valuesFs(ki) andEPRX(k) bear
no information due to the security of the PRF and the encryption
scheme. Hence, the DB learns nothing but the value table of the
inputs (i.e., theT[ki]’s for all ki’s).2

3.2 The Full-Fledged Protocol
In the following, we describe how to immunize the basic protocol

against stronger attacks.

Honest-but-curious coalition of participants and database. A
careful examination of the previous protocol shows that it is vul-
nerable against such coalitions for two main reasons.

First, a participant knows the blinded versionFs(ki) of its own
keyski, and, in addition, the DB can associate all the valuesT[ki]
to their blinded keysFs(ki). Hence, a coalition of a participant and
a DB can retrieve all the valuesT[ki] that are associated with a key
ki that the participant holds, even if this keyshould not be revealed
according tof . To fix this problem, we modify the first step of the
protocol. Instead of using an OPRF protocol, we will use a different
sub-protocol in which the participant learns nothing and the proxy
learns the valueEDB(Fs(ki)) for eachki. This solves the problem
as now that participant himself does not know the blinded version
of his own keys. To the best of our knowledge, this version of
encrypted-OPRF protocol (abbreviated EOPRF) has not appeared
in the literature before. Fortunately, we are able to construct such a
protocol by carefully modifying the OPRF construction of [10] and
combining it with El-Gamal encryption (see Section 3.3).

Second, we should eliminate subliminal channels, as these can
be used by participants and the database to match the keys of apar-
ticipant to their blinded versions (that were forwarded to the DB by
the proxy). Indeed, public-key encryption schemes use randomness
(in addition to the public key) to encrypt a message, and thisran-
domness can be used as a subliminal channel. To solve this prob-
lem, we use an encryption scheme that supports re-randomization
of ciphertexts; that is, given an encryption ofx with randomnessb,
it should be possible to recompute an encryption ofy under fresh
randomnessb′ (without knowing the private key). Now we elimi-
nate the subliminal channel by asking the proxy to re-randomize the
ciphertexts—EDB(Fs(ki)), EDB(vi), and EDB(EPRX(ki))—which
are encrypted under the DB’s public key (at Step 1). Furthermore,
we should be able to re-randomize theinternalciphertextEPRX(ki)
of the last entry as well (we will show that this can be achieved
through variant of El-Gamal encryption).

A coalition of malicious participants. As we already observed,
malicious participants can violate the correctness of our protocol.
Specifically, they might try to submit ill-formed inputs. Recall that
the participant sends to the proxy triples〈a, b, c〉, where in an hon-
est execution we havea = EDB(Fs(ki)), b = EDB(vi) andc =
EDB(EPRX(ki)) for someki andvi. However, a cheating participant
might provide an inconsistent tuple, in whicha = EDB(Fs(ki))
while c = EDB(EPRX(k

′
i)) for somek′

i 6= ki. We can prevent such
an attack by asking the proxy to apply a consistency check toR

in the last step of the protocol and to make sure thatEPRX(k
′
i) and

Fs(ki) match. The proxy omits all the inconstant values (if there
are any) and asks the DB to check again if the corresponding row
should be revealed after the omission. (This modification suffices
as long as the functionf is local, i.e., it is applied to each row
separately. See appendix for more details.)

Another thing that a cheating participant might do is to replace

2Formally, we define a functionality in which this additionalin-
formation is given to the database as part of its output. See the
appendix for details.

b with some “garbage” valueb′ = EDB(v
′) for which he does not

know the plaintextv′ (while this might not seem to be beneficial
in practice, we must prevent such an attack in order to meet our
strong definitions of security). To prevent such attack, we ask the
participant to provide a zero-knowledge proof that shows that he
knows the plaintextv to which thatb decrypts. As seen in the next
section, this does not add too much overhead.

Finally, our sub-protocol for the EOPRF should be secure against
malicious participants in the following sense: a maliciouspartici-
pant should not be able to generate a blinded valueEDB(Fs(ki))
for a keyki that he does not know.

In the appendix, we show that our modifications guarantee full
security against malicious participants.

3.3 Concrete Instantiation of the Crypto-
graphic Primitives

In the following section, we assume that the input keys are rep-
resented bym-bit strings. We assume thatm is not very large (e.g.,
less than 192–256); otherwise, one can hash the input keys and ap-
ply the protocol to resulting hashed values.

Public Parameters. Our implementation mostly employs
Discrete-Log based schemes. In the following,g is a generator of
a multiplicative groupG of prime orderp for which the decisional
Diffie-Hellman (DDH) assumption holds. We publish(g, p) during
initialization and assume the existence of algorithms for multipli-
cation (and thus also for exponentiation) inG. We letZp denote
the field of integers modulop, the set{0, 1, . . . , p − 1} with mul-
tiplication and addition modulop. We will let Z

∗
p denote the multi-

plicative group of the invertible elementsZp.

El-Gamal Encryption. We will use El-Gamal encryption over
the groupG. The private key is a random elementa from Z

∗
p,

and the public key is the pair(g, h = ga). To encrypt a message
x ∈ G, we choose a randomb from Z

∗
p and compute(gb, x · hb).

To decrypt the ciphertext(A,B), computeB/Aa = B · A−a

(where−a is the additive inverse ofa in Zp). In case we wish
to “double-encrypt” a messagex ∈ G under two different public-
keys (g, h) and(g, h′), we will choose a randomb from Z

∗
p and

compute(gb, x · (h · h′)b). This ciphertext as well as standard ci-
phertexts can be re-randomized by multiplying the first entry (resp.
second entry) bygb′ (resp.hb′) whereb′ is chosen randomly from
Z

∗
p. Finally, a zero-knowledge proof for knowing the decryption

of a given ciphertext is described in [36]. The scheme adds only 3
exponentiations and does not increase the overall round complexity
as it can be applied in parallel to the EOPRF protocol.

Naor-Reingold PRF [27]. The key s of the functionFs :
{0, 1}m → G containsm values(s1, . . . , sm) chosen randomly
from Z

∗
p. Givenm-bit stringk = x1 . . . xm, the value ofFs(k) is

g
Q

xi=1
si , where the exponentiation is computed in the groupG.

Oblivious-Transfer [31, 26]. To implement the sub protocol of
Step 1, we will need an additional cryptographic tool calledObliv-
ious Transfer (OT). In an OT protocol, we have two parties: sender
and receiver. The sender holds two strings(α, β), and the receiver
has a selection bitc. At the end of the protocol, the receiver learns a
singlestring:α if c = 0, andβ if c = 1. The sender learns nothing
(in particular, it does not know the value of the selectorc).

3.3.1 The Encrypted-OPRF protocol
Our construction is inspired by a protocol for oblivious evalua-

tion of the PRFF , which is explicit in [10] and implicit in [25, 26].
We believe that this construction might have further applications.

6

• Parties: Participant, Proxy.

• Inputs. Participant: m-bit stringk = (x1 . . . xm); Proxy:
secret keys = (s1, . . . , sm) of a Naor-Reingold PRFF .

1. Proxy choosesm random valuesu1, . . . , um from Z
∗
p and

an additional randomr ∈ Z
∗
p. Then for each1 ≤ i ≤ m,

the proxy and the participant invoke the OT protocol where
proxy is the sender with inputs(ui, si · ui) and receiver uses
xi as his selector bit. That is, ifxi = 0, the participant learns
ui and otherwise it learnssi · ui. The proxy also sends the
valueĝ = gr/Πui . (These steps can be done in parallel.)

2. The participant multiplies together the values receivedin the
OT stage. LetM denote this value. Then, it computesĝM =
(gΠxi=1si)r = Fs(k)r. Finally, the participant chooses a
random elementa from Z

∗
p and encryptsFs(k)r under the

public key DB = (g, h) of the database. The participant
sends the result(ga, Fs(k)r · ha) to the proxy.

3. The proxy raises the received pair to the power ofr′, where
r′ is the multiplicative inverse ofr modulo p. It also re-
randomizes the resulting ciphertext.

Correctness. Recall thatG has a prime orderp. Hence, when
the pair(ga, Fs(x)r · ha) is raised to the power ofr′ = r−1, the
result is(gar′

, Fs(k) · har′

), which is exactlyEDB(Fs(k)). Thus,
the protocol is correct.

Privacy. All the proxy sees is the random tuple(u1, . . . , um, r)
andEDB(Fs(k)r). This view gives no additional information ex-
cept of EDB(Fs(k)). (Formally, the view can be perfectly sim-
ulated givenEDB(Fs(k)).) On the other hand, we claim that all
the participant sees is a sequence of random values and there-
fore it also learns nothing. Indeed, the participant sees the vector
(sx1

1
· u1, . . . , s

xm

m · um), whose entries are randomly distributed
overG, as well as the valuêg = (g1/Πui)r. Sincer is randomly
and independently chosen fromZ∗

p, and sinceG has a prime order
p, the element̂g is also uniformly and independently distributed
over G. The protocol supports security against malicious partici-
pants (in the sense that was described earlier) as long as theunder-
lying OT is secure against a malicious receiver.

3.3.2 Implementing Oblivious Transfer
In general, oblivious transfer is an expensive public-key opera-

tion (e.g., it may take two exponentiations per single invocation).
In the above protocol, then, we execute an OT protocol for each bit
of the participants inputk (which would result, for example, in 64
exponentiations just to input a single IP address). However, Ishaiet
al. [17] show how to reduce the amortized cost of OT to be as fast
as matrix multiplication. This “batch OT” protocol uses a standard
OT protocol as building block. We implemented this batch OT pro-
tocol on top of the basic OT protocol of [26].3

3.4 Efficiency of our Protocol
In both the basic and extended protocol, the round complexity is

constant, and the communication complexity is linear in thenum-
ber of items. The protocol’s computational complexity is domi-
nated by cryptographic operations. For eachm-bit input key, we
have the following amortized complexity: (1) The participant who

3The “batch OT” protocol also has a version which preserves se-
curity against a malicious receiver. This increases the number of
multiplications by a multiplicative factor, but does not affect the
number of expensive public-key operations.

!"#$%&'"()*+
,-&.()/0"%&(1+!#23&.*+

!#234+5.%#4'$2(+6#"%-.*+

0#2()/7(8+

59+:&.#+

9"%;/7(8+

59+<)2#"1.+

Figure 2: Distributed proxy and database architecture

holds the input key computes 3 exponentiations in the basic proto-
col (respectively 8 in the extended protocol), as well asO(m) mod-
ular multiplication / symmetric-key operations in both versions. (2)
The proxy computes 5 exponentiations in the basic protocol (resp.
12 in the extended protocol) andO(m) modular multiplication /
symmetric-key operations. (3) The database computes 3 exponen-
tiations in the basic protocol (resp. 5 in the extended protocol).

4. DISTRIBUTED IMPLEMENTATION
In our system, both the proxy and database logical components

can be physically replicated in a relatively straightforward man-
ner. In particular, our design can scale out horizontally tohandle
higher loads, by increasing the number of proxy and/or database
replicas, and then distributing requests across these replicas. Our
distributed architecture is shown in Figure 2. Our current imple-
mentation covers all details described in the basic protocol, as well
as some security improvements of the extended version (e.g., in-
cluding the EOPRF, but not ciphertext re-randomization, proofs of
knowledge, or the final consistency check).

4.1 Proxy: Client-Facing Proxies and Decryp-
tion Oracles

One administrative domain can operate any number of proxies.
Each proxy’s functionality may be logically divided into two com-
ponents: handling client requests, and serving as decryption oracles
for the database when a particular key should be revealed. None
of these proxies need to interact, other than having all client-facing
proxies use the same secrets to key the pseudorandom functionF
and all decryption-oracle proxies use the same public/private key
PRX. In fact, these two proxies play different logical roles in our
system and could even be operated by two different administrative
domains. In our current implementation, all proxies register with
a single group membership server, although a distributed group
membership service could be implemented for additional fault tol-
erance [5, 41].

To discover a client-facing proxy, a client contacts this group
membership service, which returns a proxy IP address in round-
robin order (this could be replaced by any technique for server
selection, including DNS, HTTP redirection, or a local load
balancer). To submit its inputs, a client connects with this
proxy and then executes an amortized Oblivious Transfer (OT)
protocol on its input batch. This results in the proxy learn-

ing
D

EDB(Fs(ki)), EDB(vi), EDB(EPRX(ki))
E

for each input tuple,

which it pushes onto an internal queue. (While Section 3.3 only
described the use of ElGamal encryption, its special properties are
only needed forEDB(Fs(ki)); the other public-key operations can

7

be RSA, which we use in our implementation.) When this queue
reaches a certain length (10,000 in our implementation), the proxy
randomly permutes (shuffles) the items in the queue, and sends
them to a database server.

The database, upon determining that a keyki’s value satisfiesf ,
sendsEPRX(ki) to a proxy-decryption oracle. The proxy-decryption
oracle decryptsEPRX(ki) and returnski to the database for storage
and subsequent release to other participants in the system.

4.2 Database: Front-end Decryption and
Back-end Storage

The database component can also be replicated. Similar to the
proxy, we separate database functionality into two parts: the front-
end module that handles proxy submissions and decrypts inputs,
and aback-endmodule that acts as a storage layer. Each logical
module can be further replicated in a manner similar to the proxy.

The servers comprising the front-end database tier do not need
to interact, other than being configured with the same pub-
lic/private keypairDB. Thus, any front-end database can decrypt
the EDB(Fs(ki)) input supplied by a proxy, and the proxies can
load balance input batches across these database servers.

The back-end database storage, on the other hand, needs to be
more tightly coordinated, as we ultimately need to aggregate all
Fs(ki)’s together, no matter which proxy or front-end database
processed them. Thus, the back-end storage tier partitionsthe
keyspace of all 1024-bit strings over all storage nodes (using con-
sistent hashing [19]). All such front-end and back-end database
instances also register with a group membership server, which the
front-end servers contact to determine the list of back-endstorage
nodes. Upon decrypting an input, the front-end node determines
which back-end storage node is assigned the resulting keyFs(ki),

and sends the tuple
D

Fs(ki), vi, EPRX(ki)
E

to this storage node.

As these storage nodes each accumulate a horizontal portionof
the entire tableT , they test the value column for their local table to
see if any keys satisfyF . For each such row, the storage node sends

the tuple
D

Fs(ki), T [ki], EPRX(ki)
E

to a proxy-decryption oracle.

4.3 Prototype Implementation
Our design is implemented in roughly 5,000 lines of C++.

All communication between system components—client, front-end
proxy, front-end database, back-end database storage, andproxy-
decryption oracle—is over TCP using BSD sockets. We use the
GnuPG library for large numbers (bignums) and cryptographic
primitives (e.g., RSA, ElGamal, and AES). The Oblivious Trans-
fer protocol (and its amortized variant) were implemented from
scratch, and comprised a total of 625 lines of code. All RSA en-
cryption used a 1024-bit key, and ElGamal used a corresponding
1024-bit group size. AES-256 was used in the batch OT and its un-
derlying OT primitive. The back-end database simply storestable
rows in memory, although we plan to replace this with a durable
key-value store (e.g., BerkeleyDB [28]).

5. PERFORMANCE EVALUATION
We wish to evaluate our system along three primary dimensions.

(a) Given fixed computing resources, what is the throughput of our
system as a function of the size of the input set? (b) What are
the primary factors limiting throughput? And, (c) how does the
throughput scale with increasing computing resources? In each
case, we are concerned with both (1) how long it takes for clients
to send key-value pairs to the proxy during the OT phase (proxy
throughput) and (2) how long it takes for the DB to decrypt and

identify keys with values that satisfy the functionf (DB through-
put). We have instrumented our code to measure both. For a given
experiment requiring the proxy to processn keys, proxy throughput
is defined asn divided by the time it takes between when the first
client contacts any client-facing proxy and when the last key is pro-
cessed by some client-facing proxy. Similarly, database throughput
is defined as the number of keys processed between when the first
client-facing proxy forwards keys to some DB front-end and when
the DB back-end storage processes the last submitted keys.

Our experiments were run on multiple machines. The servers
(proxy and DB) were run on HP DL160 servers (quad-core Intel
Xeon 2 GHz machines with 4 GB RAM running CentOS Linux).
These machines can perform a 1024-bit ElGamal encryption in
2.2 ms, ElGamal decryption in 2.5 ms, RSA encryption in 0.5 ms,
and RSA decryption in 2.8 ms. Due to a lack of homogeneous
servers, the clients were run on different machines depending on
the experiment. The machines used for the clients were either (A)
of the same configuration as the servers, or one of either (B) Sun
SunFire X4100 servers with two dual-core 2.2 GHz Opteron 275
processors (four 64-bit cores) with 16GB RAM running CentOS,
or (C) Dell PowerEdge 2650 servers with two 2.2 GHz Intel Xeon
processors and 5 GB of memory, also running Linux.

As noted in the introduction, our system can be used in differ-
ent contexts. One of the most prominent is that of anomaly detec-
tion: specifically, networks collaborating to identify attacking IP
addresses—e.g., belonging to a botnet—with greater confidence.
Modern botnets can range up to roughly 100,000 unique hosts [32],
and we would like our system to be able to correlate suspicions of
hundreds of participating networks within some numbers of hours.
In order to support such a usage scenario, our implementation will
need to be able to process millions of keys in the span of hours
or many hundreds of keys per second. We will revisit the feasibil-
ity of our implementation for our supporting applications in Sec-
tion 5.2, but these numbers should provide rough expectations for
the throughput numbers to be presented in Section 5.1.

5.1 Scaling and Bottleneck Analysis

Effect of number of keys (Figure 3a). The input trace to our sys-
tem is parameterized by the number of clients and by the number
of keys they each submit. In Figure 3a, we measure the throughput
of our system as a function of the number of keys. More precisely,
we run a single client, a single proxy, and a single DB in orderto
measure single-CPU-core proxy throughput and single-CPU-core
DB throughput. The top solid curve shows proxy throughput when
the proxy and client utilize the amortized OT protocol, the middle
dashed curve shows DB throughput, and the bottom partial curve
shows proxy throughput when the proxy and client utilize only the
standard OT primitive, which does not include our amortization-
based extensions. The throughput of the OT primitive is exceed-
ingly low (less than one key per second), which is why it was not
evaluated on the full range of x-values.

Proxy throughput scales well with the number of incoming
keys when the client and proxy utilize the amortized OT protocol.
Throughput increases with increasing numbers of keys per batch,
as the amortized OT calls the primitive OT a fixed number ofk
times regardless of the number of input keysn. With smalln (e.g.,
up to 1000), the cost of these calls to the primitive OT dominate
overall execution time and leave the proxy underutilized. However,
as the size of the input set increases, the cost of encryptingkeys on
the client becomes the primary bottleneck, which is the plotshows
minimal increase in throughput aboven = 8000.

DB throughput, on the other hand, does not scale with the num-

8

keys

T
hr

ou
gh

pu
t (

ke
ys

 /
se

c)

0 2000 4000 6000 8000 10000
0

50

100

150

Proxy (Amortized OT)
DB
Proxy (OT Primitive)

(a) Scaling number of keys
clients

T
hr

ou
gh

pu
t (

ke
ys

 /
se

c)

5 10 15 20 25 30 35
0

200

400

600

800

1000
Proxy
DB

(b) Scaling number of participants
CPU cores

T
hr

ou
gh

pu
t (

ke
ys

 /
se

c)

2 3 4 5 6 7 8
0

500

1000

1500

2000

2500
Proxy
DB

(c) Scaling number of proxy/DB replicas

Figure 3: Scaling: Effect of (a) number of keys, (b) number of participants, and(c) number of proxy/database replicas.

ber of keys. The reason for this is that the intensive work on the
DB is decryption, which is performed in batch, and it is therefore
entirely CPU limited. The DB becomes CPU limited at 10 keys
and remains CPU limited at 10,000 keys (i.e., latency goes up and
throughput remains constant). We noted earlier that the machines
on which the DB and proxy run require 2.5 ms per decryption.
Since the DB has to perform 3 decryptions per key, the DB there-
fore has a maximum throughput of 135 keys per second on a single
CPU core. Figure 3a shows that our DB implementation achieves
throughput of roughly 90 keys per second.

The amortized OT protocol [17] introduces a trade-off between
the message overhead and memory consumption. The memory
footprint of this protocol per client-proxy interaction for n keys
is n × 32 × 2 × 1024/8 = 8196n bytes (i.e., we assume 32 bits
per key, the 2 values for the OT primitive, 1024-bit keys, and8
bits per byte). Forn = 10, 000 keys, for example, this requires
82 MB on both the proxy and the client. A proxy communicating
with 100 clients would therefore require in excess of 8GB of mem-
ory. A user of the protocol could choose to execute the amortized
OT protocol in stages, however, by sendingk keys at a time, which
would reduce the memory footprint. Our system is parameterized
to support this, and because Figure 3a shows that there is little to
gain from batch sizes in excess of 5,000 keys, the remainder of our
experiments will use batch sizes of 5,000 keys.

Our architecture is designed to maximize throughput, not min-
imize latency. In fact, providing a meaningful measure of la-
tency is challenging for multiple reasons: (a) the DB processes

f
def
= T[ki] ≥ τ once everyt seconds (i.e., not upon arrival, which

wouldn’t make sense unlessτ = 1); (b) the proxy batches and ran-
domly permutes/shuffles key-value pairs for security; and (c) the
substantial benefit of the amortized OT (over the OT primitive: see
again Figure 3a) is lost if the client submits only a1 key-value pair,
which is required for a “true” latency experiment. These qualifiers
notwithstanding, Figure 3a does provide a form of “mean” latency.
That is, a single client with 5000 keys would see mean proxy la-
tency of 7.2 milliseconds per key and mean DB latency of 11.1
milliseconds per key.

Effect of number of participants (Figure 3b). Here we eval-
uate the throughput of our system as a function of the number of
clients sending keys. In this experiment, we limit the proxyand
DB to one server machine each. Four client-facing proxy processes
are launched on one machine and four front-end DB processes are
launched on the other. They can therefore potentially utilize all
eight cores on these two machines. Figure 3b shows that the proxy
scales well with the number of clients. Proxy throughput increases
by nearly a factor of two between 8 and 32 clients. This signifies

Global Within amortized OT
wait encrypt wait pow AES arith other OT
60% 1% 0% 16% 4% 4% 6% 7%

Table 2: Breakdown of proxy resource usage

Global Within amortized OT
wait encrypt wait pow AES arith other OT
0% 40% 31% 16% 2% 1% 3% 7%

Table 3: Breakdown of client resource usage

that, when communicating with a single client, a proxy spends a
substantial fraction of its time idling. The four proxies inthis ex-
periment are not CPU limited until they handle 32 clients, atwhich
time the throughput approaches 900 keys per second. The DB, on
the other hand, is CPU-bound throughout. It has a throughputof
about 350 keys per second, independent of the number of clients.

Effect of number of replicas (Figure 3c). Finally, we wish to
analyze how our distributed architecture scales with the available
computing resources. In this experiment, we provide up to 8 cores
across two machines to each of the proxy and DB front-ends. While
the proxy is evaluated on 64 clients, computing resource constraints
meant that the DB is evaluated on 32 clients.

Both our proxy and DB scale linearly with the number of CPU
cores allocated to them. Throughput for the DB with 2 cores when
handling 32 clients was over 173 keys per second, whereas at 8
cores the throughput was 651 keys per second: a factor of 3.75
increase in throughput for a factor of 4 increase in computing re-
sources. The proxy has throughput of 1159 keys per second when
utilizing 4 cores and 2319 when utilizing 8 cores: an exact factor
of 2 increase in throughput for an equal increase in computing re-
sources. This clearly demonstrates that our protocol, architecture,
and implementation can scale up to handle large data sets. Inpar-
ticular, our entire system could handle input sizes on the order of
millions of keys in hours.

Micro-benchmarks. To gain a deeper understanding of the fac-
tors limiting the scalability of our design, we instrumented the code
to account for how the client and proxy were spending their CPU
cycles. While the DB is entirely CPU bound due only to decryp-
tions (i.e., its limitations are known), the proxy and client engage
in the oblivious OT protocol whose bottlenecks are less clear. In
Tables 2 and 3, we therefore show the fraction of time the client
and proxy, respectively, spend performing various tasks needed for
their exchange. In this experiment, we have a single client send
keys to a single proxy at the maximum achievable rate.

9

At the highest level, we split the tasks performed into (a) waiting
(called “wait”), (b) encrypting or decrypting values (“encrypt”), or
(c) engaging in the amortized OT protocol. We further split work
within the amortized OT protocol into time spent waiting, perform-
ing modulo exponentiations (“pow”), calling AES256, performing
basic arithmetic such as multiplication, division, or finding mul-
tiplicative inverses (“arith”), calling the OT primitive (“OT”), and
any other necessary tasks (“other”) such as XOR’ing numbers, gen-
erating random numbers, allocating or de-allocating memory, etc.

Table 2 shows that when communicating with a single client,
the client-facing proxy spends more than 60% of its time idling
while waiting for the client—it ismore than60% because some
part of the 7% of time spent within the OT primitive is also idle
time. The 60% idle time is primarily due to waiting for the client to
encryptki andFs(ki). The single largest computational expense
for the proxy is performing powmods at 16%; the remaining non-
OT tasks add up to 15%. In order to make the proxy more efficient,
therefore, utilizing a bignum library with faster exponentiation and
basic arithmetic would be advantageous.

The client also spends a non-trivial amount of time waiting—
31% of total execution time—but substantially less than theproxy.
It spends 40% of its time encrypting values. The reason this 40%
does not match up with the 60% idle time of the proxy is because
the proxy finishes its portion of the amortized OT before the client
does its portion. That is, 20 out of the proxy’s 60% idle time is due
to the client processing data sent by the proxy in the last stage of the
amortized OT protocol, and the remaining 40 is due to the client en-
crypting its values. A with the proxy, the client would benefit from
faster exponentiations, but encryption is clearly the major bottle-
neck. We noted before that the GnuPG cryptographic library we
use performed public-key operations in approximately 2.5–2.8 ms.
On the same servers, we benchmarked the Crypto++ library to per-
form RSA decryption in only 1.2 ms, increasing speed by 130%.
Crypto++ would also allow us to take advantage of elliptic curve
cryptography, which would increase system throughput. In future
work, we plan to modify our implementation to use this library.

5.2 Feasibility of Supporting Applications
In this section, we revisit several potential applicationsof our

system. We consider our results in light of their potential demands
on request rate: the number of requests per unit time that must be
satisfied, the number of keys which must be stored in the system,
and the number of participants.

Anomaly detection. Network operators commonly run systems
to detect and localize anomalous behavior within their networks.
These systems dynamically track the traffic mix—e.g., the volume
of traffic over various links or the degree of fanout from a particular
host—and detect behavior that differs substantially from the statis-
tical norm. For example, Maoet al. [24] found that most DDoS
attacks observed within a large ISP were sourced by fewer than
10,000 source IPs, and generated 31,612 alarms over a four-week
period (0.8 events per hour). In addition, Souleet al. [37] found
that volume anomalies occurred at a rate of four per day on aver-
age, most of which involved fewer than several hundred source IPs.
Finally, Ramachandranet al.[33] found were able to localize 4,963
Bobax-infected host IPs sending spam from a single vantage point.
We envision our system could be used to improve accuracy of these
techniques by correlating anomalies across ISP boundaries. We
found our system could handle 10,000 IP addresses as keys, with a
request rate of several hundred keys per second, even with several
hundred participants. Given our system exceeds the requirements
of anomaly detection, our system may enable the participants to

“tune” their anomaly detectors to be more sensitive, and reduce
false positive rates by leveraging other ISPs’ observations.

Cross-checking certificates.Multiple vantage points may be used
to validate authenticity of information (such as a DNS replyor ssh
certificate [29, 39]) in the presence of “man-in-the-middle” attacks.
Such environments present potentially larger scaling challenges
due to the potentially large number of keys that could be inserted.
According to [18], most hosts execute fewer than 15 DNS lookups
per hour, and according to [35], ssh hosts rarely authenticate with
more than 30 remote hosts over long periods of time. Here, we en-
vision our system could simplify the deployment of such schemes,
by reducing the amount of information revealed about clients’ re-
quest streams. Under this workload (15 key updates per hour,with
30 keys per participating host), our system scales to support several
hundred hosts with only a single proxy. Extrapolating out tolarger
workloads, our system can handle tens of thousands of clients stor-
ing tens of thousands of keys with under fifty proxy/databasepairs.

Distributed ranking. Search tools such as Alexa and Google
Toolbar collect information about user behavior to refine search re-
sults returned to users. However, such tools are occasionally la-
beled asspywareas they reveal information about the contents of
queries performed by users. Our tool may be used to improve pri-
vacy of user submissions to these databases. It is estimatedthat
Alexa Toolbar has 180,000 active users, and it is known that av-
erage web users browse 120 pages per day. Here, the number of
participants is large, but the number of keys they individually store
in the system is smaller. Extrapolating our results to 180,000 par-
ticipants, and assuming several thousands of keys, our system can
still process several hundred requests per second (corresponding to
several hundred thousand clients) per proxy/database pair.

6. CONCLUSIONS
In this paper, we presented the design, implementation, andeval-

uation of a collaborative data-analysis system that is bothscalable
and privacy preserving. Since a fully-distributed solution would be
complex and inefficient, our design divides responsibilitybetween
two independent parties—a proxy that obliviously blinds the client
inputs and a database that identifies the (blinded) keys thathave val-
ues satisfying an evaluation function. The functionality of both the
proxy and the database can be easily distributed for greaterscalabil-
ity and reliability. Experiments with our prototype implementation
show that our system performs well under increasing numbersof
keys, participants, and proxy/database replicas. The performance
is well within the requirements of our motivating applications, such
as collaborating to detect the malicious hosts responsiblefor DoS
attacks or to validate the authenticity of information in the presence
of man-in-the-middle attacks.

As part of our ongoing work, we plan to evaluate our system in
the context of several real applications—first through a trace-driven
evaluation and later by extending our prototype to run theseappli-
cations. In addition, we plan to explore opportunities to deploy our
system in practice. A promising avenue is distributed Internet mon-
itoring infrastructures such as NetDimes [38] and the new M-Lab
(Measurement Lab) initiative [22]. We believe our system could
lower the barriers to collaborative data analysis over the Internet,
enabling a wide range of new applications that could improveIn-
ternet security, performance, and reliability.

10

7. REFERENCES

[1] A LEXA THE WEB INFORMATION COMPANY, 2009.
http://www.alexa.com/.

[2] A LLMAN , M., BLANTON , E., PAXSON, V., AND SHENKER, S.
Fighting coordinated attackers with cross-organizational information
sharing. InHotNets(November 2006).

[3] BEN-DAVID , A., NISAN, N., AND PINKAS , B. FairplayMP: A
system for secure multi-party computation. InProc. ACM Computer
and Communications Security Conference(October 2008).

[4] BOGETOFT, P., CHRISTENSEN, D. L., DAMGARD , I., GEISLER,
M., JAKOBSEN, T., KRØIGAARD, M., NIELSEN, J. D., NIELSEN,
J. B., NIELSEN, K., PAGTER, J., SCHWARTZBACH, M., AND

TOFT, T. Multiparty computation goes live. Cryptology ePrint
Archive, Report 2008/068, 2008.http://eprint.iacr.org/.

[5] BURROWS, M. The Chubby lock service for loosely-coupled
distributed systems. InProc. OSDI(November 2006).

[6] CHOR, B., GOLDREICH, O., KUSHILEVITZ, E., AND SUDAN , M.
Private information retrieval.Journal of the ACM 45, 6 (November
1998).

[7] D INGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor: The
second-generation onion router. InProc. 13th USENIX Security
Symposium(August 2004).

[8] DOUCEUR, J. R. The Sybil attack. InProc. Intl. Workshop on
Peer-to-Peer Systems(March 2002).

[9] FAGIN , R., NAOR, M., AND WINKLER , P. Comparing information
without leaking it.Communications of the ACM 39, 5 (1996), 77–85.

[10] FREEDMAN, M. J., ISHAI, Y., PINKAS , B., AND REINGOLD, O.
Keyword search and oblivious pseudorandom functions. InProc.
Theory of Cryptography Conference(February 2005).

[11] FREEDMAN, M. J., NISSIM, K., AND PINKAS , B. Efficient private
matching and set intersection. InAdvances in Cryptology —
EUROCRYPT(May 2004).

[12] FRIEND-OF-A-FRIEND PROJECT, 2009.
http://www.foaf-project.org/.

[13] GARRISS, S., KAMINSKY, M., FREEDMAN, M. J., KARP, B.,
MAZIÈRES, D., AND YU, H. RE: Reliable email. InNSDI (May
2006).

[14] GOLDREICH, O. Foundations of Cryptography: Basic Applications.
Cambridge University Press, 2004.

[15] GOOGLE SAFE BROWSING FORFIREFOX, 2009.http:
//www.google.com/tools/firefox/safebrowsing/.

[16] HAZAY, C., AND L INDELL , Y. Efficient protocols for set
intersection and pattern matching with security against malicious and
covert adversaries. InProc. Theory of Cryptography Conference
(March 2008).

[17] ISHAI, Y., K ILIAN , J., NISSIM, K., AND PETRANK, E. Extending
oblivious transfers efficiently. InAdvances in Cryptology —
CRYPTO(August 2003).

[18] JUNG, J., SIT, E., BALAKRISHNAN , H., AND MORRIS, R. DNS
performance and the effectiveness of caching.IEEE/ACM Trans.
Networking 10, 5 (October 2002).

[19] KARGER, D., LEHMAN , E., LEIGHTON, T., PANIGRAHY, R.,
LEVINE, M., AND LEWIN, D. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world
wide web. InACM Symposium on Theory of Computing(1997).

[20] K ISSNER, L., AND SONG, D. Privacy preserving set operations. In
Advances in Cryptology — CRYPTO(August 2005).

[21] L INDELL , Y., AND PINKAS , B. Privacy preserving data mining. In
Advances in Cryptology — CRYPTO(August 2000).

[22] M-L AB : WELCOME TO MEASUREMENTLAB, 2009.
http://www.measurementlab.net/.

[23] MALKHI , D., NISAN, N., PINKAS , B., AND SELLA , Y. Fairplay: A
secure two-party computation system. InProc. USENIX Security
(August 2004).

[24] MAO, Z., SEKAR, V., SPATSCHECK, O., VAN DER MERWE, J.,
AND VASUDEVAN, R. Analyzing large DDoS attacks using multiple
data sources. InSIGCOMM Workshop on Large Scale Attack Defense
(September 2006).

[25] NAOR, M., AND PINKAS , B. Oblivious transfer and polynomial
evaluation. InProc. Symposium on Theory of Computing(May 1999).

[26] NAOR, M., AND PINKAS , B. Oblivious transfer with adaptive
queries. InAdvances in Cryptology — CRYPTO(August 1999).

[27] NAOR, M., AND REINGOLD, O. Number-theoretic constructions of
efficient pseudorandom functions. InProc. Symposium on
Foundations of Computer Science(October 1997).

[28] ORACLE. Berkeley DB, 2009.http://www.oracle.com/
technology/products/berkeley-db/.

[29] POOLE, L., AND PAI , V. S. ConfiDNS: Leveraging scale and history
to improve DNS security. InProc. Workshop on Real, Large
Distributed Systems(November 2006).

[30] PRIVACY RIGHTS CLEARINGHOUSE. A chronology of data
breaches, January 2009.http://www.privacyrights.org/
ar/ChronDataBreaches.htm.

[31] RABIN , M. How to exchange secrets by oblivious transfer. Tech.
Rep. TR-81, Harvard Aiken Computation Laboratory, 1981.

[32] RAJAB, M. A., ZARFOSS, J., MONROSE, F., AND TERZIS, A. My
botnet is bigger than yours (maybe, better than yours): why size
estimates remain challenging. InHotBots(Berkeley, CA, USA,
2007).

[33] RAMACHANDRAN , A., AND FEAMSTER, N. Understanding the
network-level behavior of spammers. InProc. ACM SIGCOMM
(September 2006).

[34] RINGBERG, H., SOULE, A., AND CAESAR, M. Evaluating the
potential of collaborative anomaly detection. Unpublished report,
2008.

[35] SCHECHTER, S., JUNG, J., STOCKWELL, W., AND MCLAIN , C.
Inoculating SSH against address harvesting. InProc. Network and
Distributed System Security Symposium(February 2006).

[36] SCHNORR, C.-P. Efficient signature generation by smart cards.
Journal of Cryptology 4, 3 (1991), 161–174.

[37] SOULE, A., RINGBERG, H., SILVEIRA , F., REXFORD, J.,AND

DIOT, C. Detectability of traffic anomalies in two adjacent networks.
In Passive and Active Measurement(April 2007).

[38] THE DIMES PROJECT, 2009.
http://www.netdimes.org/new/.

[39] WENDLANDT, D., ANDERSEN, D. G.,AND PERRIG, A.
Perspectives: Improving SSH-style host authentication with
multi-path probing. InProc. USENIX Annual Technical Conference
(2008).

[40] X IE, Y., REITER, M. K., AND O’HALLARON , D. Protecting
privacy in key-value search systems. InACSAC: Proceedings of the
22nd Annual Computer Security Applications Conference
(Washington, DC, USA, 2006), pp. 493–504.

[41] YAHOO! HADOOP TEAM. Zookeeper.
http://hadoop.apache.org/zookeeper/, 2009.

[42] YAO, A. C. Protocols for secure computations. InProc. Symposium
on Foundations of Computer Science(November 1982).

APPENDIX
Here, we describe the extended protocol of Section 3.2.

1. Each participant interacts with the proxy as follows. Foreach
entry 〈ki, vi〉 in the participant’s list, the participant and the
proxy run a sub-protocol for encrypted oblivious evaluation
of the PRF (EOPRF). At the end of this protocol, the par-
ticipant learns nothing and the proxy learns only the value
EDB(Fs(ki)). The participant sends the valuesEDB(EPRX(ki))
andEDB(vi) together with a proof of knowledge (POK) for
knowing the plaintext of the last entry. If the POK succeeds,
then the proxy re-randomizes the ciphertexts and adds the
triple to a list. Otherwise, if the POK fails, the proxy ignores
the triple.

2. Same as in the original protocol.

3. The DB builds the tablesR andH as in the original protocol.
For each row inR, the DB sends to the proxy the valueFs(ki)
together with the corresponding listE[ki] which supposedly
contains ciphertexts of the formEPRX(ki). The DB also re-
randomizes these ciphertexts.

11

4. The proxy goes over the received table. For each entry of
the received table, it decrypts all the values in the listE[ki]
and verifies that the plaintext corresponds to the blinded key
Fs(ki). It reports inconsistencies to the DB and sendski if it
appears in the listE[ki].

5. For each row, the DB updates the listT[ki] by omitting the
valuesvi for which inconsistencies were found. Then, it ap-
plies f again to the updated row, checks whether it should
be released, and, if so, publishes the corresponding keyki to-
gether with the updated list of valuesT[vi]. (The valueki was
given by the proxy as at least one of the ciphertexts inE[ki]
was consistent with the blinded key.)

We now sketch the proofs for the security of the protocol. First
let us formally define the functionality we consider. Consider all
submitted key-value pairs as a table, where each distinct key ki is
associated with a list̂T[ki] of all valuesvi submitted with it. Let̂R
be the sub-table that consists of all the rows that should be revealed
(according tof), and letĤ be the table that contains all the other
entries with the key column omitted. Our functionality outputs R̂

as a public value and̂H as a private output for the DB. We prove
that our protocol securely computes this functionality.

Honest but curious coalition of participants and a proxy. The
joint view of the proxy and the honest-but-curious (HBC) partici-
pants contains the following: (1) the inputs(ki, vi) of the HBC par-
ticipants and the public outputŝR; (2) the information exchanged
by the proxy and the HBC participants during the first stage; (3) the
view of the proxy when interacting with other participants in the
first stage, which consists of the proxy’s view of the sub-protocols
(EOPRF and POK) as well as triples of the ciphertextsEDB(vi),
Edb(Fs(ki)), andEDB(EPRX(ki)); and (4) the tableR sent by the
DB to the proxy at the “revealing” phase of the protocol.

This view can be simulated, given the corresponding inputs(ki, vi)

and the outputŝR, as follows. Choose a random PRF keys, as well
as public keysPRX and DB. Simulate (1) and (2) in the natural
way (all the information needed for these computations is given).
To simulate (3), use the simulators of the sub-protocols andgener-
ate garbage ciphertextsEDB(0), EDB(0), EDB(0). To simulate (4),
encrypt the values in̂R underPRX and blind the keys unders.

Honest-but-curious coalition of participants and a DB. The
joint view of the proxy and the HBC participants contains thefol-
lowing: (1) the inputs(ki, vi) of the HBC participants and the
public outputsR̂; (2) the view of the HBC participants during the
interaction with the proxy, which consists of the view of thesub-
protocols (EOPRF and POK) as well as triples of ciphertextsEDB(vi),
Edb(Fs(ki)), andEDB(EPRX(ki)); and (3) the view of the DB when
interacting with the proxy, which consists of the tablesR andH (en-
crypted under the DB’s public key).

Given the corresponding inputs(ki, vi), the public output̂R, and
the DB’s private output̂H, we show how to simulate the above view.
First, choose a random PRF keys, as well as public keysPRX and
DB. Then, simulate (1) and (2) in the natural way (all the informa-
tion needed for these computations is now given). It remainsjust
to simulateR andH. The tableR can be computed from̂R ands.
To simulateH, we should somehow add blinded values toĤ (and
encrypt the tuples underDB). We do this by building a key-value
table for the inputs of the HBC participants. Then, for each row ki,
we choose a random consistent row inĤ and add the valueFs(ki)
as an additional blinded-key column. (A row is consistent with a
key ki if the list of values of the HBC’s that are associated withki

appear as part of the value list of the row inĤ.) Finally, for those

rows which are left with no blinded key column, a random valueis
added.

Malicious coalition of participants. Let A be an adversarial
strategy for a coalition of cheating participants. We construct a
simulator that achieves the same “cheating” affect in the ideal-
world. The simulatorS chooses a keys for the PRF, as well as
pairs of private/public keys for the DB and proxy. It provides these
keys toA and executesA. For each iterationi, A generates a
triple (ai, bi, ci), together with a POK for knowing the plaintext
encrypted inci. (In an honest executionai = EDB(Fs(ki)), bi =
EDB(EPRX(ki)), andci = EDB(vi), for someki andvi.) The simu-
latorS uses the POK to extractvi; if the POK fails, thenS ignores
the triple. Finally,S checks (using all the above keys) whetherai

andbi are consistent (i.e., it decryptsai to a′
i, decryptsbi to b′i, and

then verifies thatFs(b
′
i) = ai). If the check fails,S ignores the

tuple. Otherwise, the simulator, which now knows bothki andvi,
passes these entries to the trusted party.

12

