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The primary focus of the NEBULA Future Internet Architecture is to provide resilient net-
working for the emerging cloud computing model. One of the attractions of cloud comput-
ing is its support for online services and data storage by thin clients such as mobile de-
vices. This paper describes two components of NEBULA’s edge network technology, Serval
and CRYSTAL. Serval provides a new layer 3.5 service abstraction that naturally supports
mobility, multi-homing, and multi-path transport, while CRYSTAL is a new virtualization
scheme for software radios that makes it easier to expose greater network diversity at the
network edge.

I. Introduction

The Internet topology commonly uses redundancy—
both within Autonomous Systems, to transit
providers, and between network peers—for re-
silience to both congestion and failures. Increasingly,
redundancy has appeared at the edges: mobile devices
are commonly multi-homed with different providers,
and the datacenters which feature prominently in the
emerging cloud-computing model have both redun-
dant border routers and many peers. In fact, large
online services typically deploy multiple datacenters
and increasingly run their own backbone. Such facts
point to the central importance of redundancy in
providing highly available services and networks.

Unfortunately, this redundancy at the network level
is commonly hidden by routing algorithms that export
only a single, best path (as in the case with BGP).
This leads to potentially slow failover and a general
inability for end-points to affect their routing based on
local policy preferences, even when different routes
may be of equivalent cost to network operators. Fur-
ther, today’s end-point networking abstractions, tied
to topological-dependent addresses, further serve to
bind flows to single paths in the network.

The NEBULA Future Internet Architecture (FIA)
project [1] is focused on providing a more resilient
network architecture to better support high-assurance
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cloud computing. With services, computation, and
storage moving to these large-scale datacenters, we
believe that networking to these datacenters must be
significantly more resilient for some applications to
trust and move to cloud computing (e.g., remote health
monitoring and drug dispensing). As such, the NEB-
ULA project takes a holistic view of resilience, and
includes work on robust datacenter networks [2, 3],
fault-tolerant routers [4], BGP session recovery be-
tween routers [5], and policy control of paths [6].
While NEBULA is not primarily focused on mobil-
ity (unlike the MobilityFirst FIA project [7]), this re-
siliency must also include the ability for mobile de-
vices to robustly access datacenter services.

In this paper, we discuss two efforts—Serval [8]
and CRYSTAL—that focus on the mobile edge. Ser-
val provides a new layer 3.5 service abstraction that,
among other things, allows mobile devices to easily
take advantage of multiple interfaces or paths. Basing
decisions on local policy, end-points can efficiently
migrate connections or spread traffic over multiple
paths. CRYSTAL is a new virtualization scheme for
software radios that can better take advantage of or
create additional network diversity at the edge. This
diversity, in turn, can be leveraged by Serval-enabled
devices for more resilience or policy-compliant net-
work access by applications. The next two sections
describe Serval and CRYSTAL, respectively, while
we conclude by discussing potential benefits from
their integration.
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II. Resilient networking with Serval

Today’s Internet is subject to increasing dynamics
along the network edge, both on the client and server
side. On the client side, users turn to mobile hand-held
devices that have multiple forms of network access
(e.g., cellular and WiFi), often moving between ac-
cess points. Internet services, on the other hand, com-
monly run on multiple servers in different locations,
where client requests are directed to different service
instances based on proximity, geographic location,
server load, or network conditions; service instances
at new locations may be spun-up or spun-down based
on changing demand; and virtual machines may be
migrated between physical devices. All these forms
of dynamics pose challenges, but also opportunities,
for resilient communication. The multiplicity of, e.g.,
network interfaces, server replicas, and paths, offers
ways to overcome failures through redundancy.

Unfortunately, today’s network stack rigidly binds
service names and data flows to topology-dependent
IP addresses, making it hard to move services and
flows between interfaces or attachment points. Thus,
services can only slowly fail over to new addresses
in case of replica failures (by, e.g., DNS time-
outs/updates), and ongoing data flows must be re-
established and application state resynchronized as
soon as an interface or path become unavailable.

Serval aims to provide better support for modern,
dynamic network environments when resilient access
to services is of central importance. To this end,
Serval treats services and flows as first-class primi-
tives by naming them explicitly—something implic-
itly achieved today only through the overloading of
port numbers and IP addresses. Serval cleanly sepa-
rates the roles of the service name (to identify a ser-
vice), flow identifiers (to identify each flow associ-
ated with a socket), and network addresses (to iden-
tify each host interface). Because applications are
shielded from lower-level IP addresses and the mean-
ing and use of these identifiers are no longer over-
loaded, end-points can seamlessly change network ad-
dresses, migrate flows across interfaces, or establish
additional flows for efficient and uninterrupted service
access. Figure 1 illustrates a comparison between Ser-
val’s naming abstractions and those in today’s layers.

The centerpiece of the Serval architecture is a new
Service Access Layer (SAL) that sits between the IP
Network Layer (Layer 3) and the Transport Layer
(Layer 4), where it can work with unmodified net-
work devices. The SAL is a service data plane that
allows applications to establish communication to po-
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Figure 1: Identifiers and example operations on them
in the TCP/IP stack versus Serval.

tentially replicated services directly on service names
(connect to the “Health Monitoring Service”), then
robustly maintain connections across mobility events.

Unlike traditional “service layers,” which sit above
the transport layer, the SAL’s position below transport
provides a programmable service-level data plane that
can adopt diverse service discovery techniques. The
SAL can be programmed through a user-space con-
trol plane, acting on service-level events triggered by
socket calls (e.g., a service instance automatically reg-
isters on binding a socket). This also gives network
programmers hooks for ensuring service-resolution
systems are up-to-date, leading to a software-defined
control of services and end-points.

II.A. Serval mobility and multi-homing

To support multiplicity and dynamism, the SAL can
establish multiple flows (over different interfaces or
paths) to a remote end-point, and seamlessly migrate
flows over time. Serval’s in-band signaling protocols
are similar to MPTCP [9] and TCP Migrate [10], with
some high-level differences. First, we separate con-
trol messages (with their own sequence numbers for,
e.g., creating and tearing down flows) from the data
stream, which avoids problems with using TCP op-
tions. Second, by managing flows in a separate proto-
col layer, the SAL can support other transport layers
beyond TCP. Third, our solution supports both mul-
tiple flows and migration. Finally, because connec-
tions are initially established on Serval’s high-level
names, rather than IP addresses, applications need not
initially address some known rendezvous point. Ser-
val’s control-plane mechanisms for handling dynamic
events help maintain the mapping from service end-
points to network locations (addresses).

Serval’s end-point connection control protocol con-
sists of three main parts. First, end-points perform a
handshake to establish a connection with a single flow.
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Second, the end-points can add more flows to the ex-
isting connection to use additional interfaces or paths.
Third, the end-points can change the addresses associ-
ated with ongoing flows as attachment points change
or interfaces fail.

Our design to support mobility and multi-homing
uses a few key design choices:

Decoupling demultiplexing keys from addresses.

Each flow’s unique identifier, called a flowID, serves
as a demultiplexing key that maps packets to socket
state. The usage of flowIDs avoids coupling demulti-
plexing with specific addresses, which otherwise im-
pedes mobility.

Exchanging alternate interface addresses for

connection resilience. During connection establish-
ment, the communicating end-hosts exchange a list of
peer interfaces (IList) that can be used for establishing
new flows. New ILists (treated as an atomic update)
can be sent at any time along any established flow.
ILists increase connection resilience by enabling flow
establishment on alternative interfaces.

Confirming reverse connectivity. As network
paths can exhibit asymmetric connectivity, Serval uses
a three-way synchronization handshake that confirms
reverse connectivity with its final acknowledgment,
used both for establishing new flows and migrating
existing ones.

Ordering protocol control messages. Control
messages in Serval have unique, monotonically in-
creasing version numbers. This ensures that concur-
rent resynchronization requests are properly ordered if
a host were to rapidly migrate between networks. By
not reusing the sequence space of the transport layer,
Serval remains independent of data delivery.

Since the transport layer is unaware of flow identi-
fiers and interface addresses, the SAL can freely mi-
grate a flow from one host, interface, or path to an-
other. To migrate, it initiates a three-way ReSYN-
chronize protocol from a different end-point address,
using the flow’s existing flowID. Similarly, establish-
ing multiple flows simply involves sending a new
SYN message to any of remote end point’s known
addresses; the remote end accepts the new address
combination, or, based on local policy, signals an-
other preference by sending back a NACK, forcing the
source to try another combination.

This design allows Serval to support client mobil-
ity, interface failover, and virtual machine migration
with a single, simple flow-resynchronization primi-
tive. Obviously, changing a flow’s path affects the
round-trip time and available bandwidth between the
two end-points, which, in turn, affects congestion con-

trol. Yet, this is no different to TCP than any other
sudden change in path properties. Further, SAL can
provide an “upcall” to the transport layer on migration
events to enable a quick response (e.g., repeating slow
start), without revealing the flowIDs and network ad-
dresses. In fact, our current implementation “freezes”
the transport layer during migration to avoid spurious
packet loss and retransmission.

To ensure correctness, we modeled our protocol us-
ing the Promela language and SPIN verification tool,
formally verifying that it is free from livelocks and
deadlocks. To our knowledge, this is the first mobility
protocol to be formally verified; a unique trait of our
model is the inclusion of network packet loss, dupli-
cation, and reordering. In the process of building the
model, we found bugs with both our original design
and with an earlier mobility protocol [10]. Further
details of the protocol and model can be found else-
where [11].

In the rare case that both end-points move at the
same time, neither end-point would receive the other’s
migration notification. To handle such simultaneous
migration, we envision introducing a local redirection
middlebox into each network. This middlebox keeps
a short-lived redirection cache of the new locations
of hosts that have recently moved out of its network
(populated by updates from hosts following their mi-
gration). Similar to Mobile IP [12, 13], this middle-
box acts as a “home agent,” but only temporarily to
ensure successful resynchronization, and thus avoids
longer-term tunneling or triangle routing.

Finally, the signaling protocol has good security
and backwards-compatibility properties. Random
flow nonces protect against off-path attacks that try
to hijack or disrupt connections without using compu-
tationally expensive cryptography. Off-path attackers
would have to brute-force guess these nonces, which
is impractical. The signaling protocol can also operate
correctly behind network-address translators (NATs).
Much like legacy NATs can translate ports, a Serval
NAT translates both flowIDs and addresses. But be-
cause the remote host can identify a flow based solely
on its own flowID (rather than the 5-tuple), it can
still correctly demultiplex a migration request when
a Serval host migrates between NAT’d networks, de-
spite the change in the NAT flowID and address. Our
current prototype also supports deployment behind
legacy NATs through UDP encapsulation.

II.B. Policy-aware path selection

In addition to the Serval stack, we are developing
a new control framework for policy-aware mobility
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(e.g., deciding when/where to migrate flows). This al-
lows a device’s network usage to more closely match a
user’s goals as well as provide greater resiliency when
confronting quickly changing network conditions. As
an example, smartphones have both WiFi and cellu-
lar network interfaces, but typically only use one at a
time. The choice of which interface to use can change
quickly in an area with spotty coverage (e.g., WiFi
on a college campus). Further, connectivity is not the
only thing that matters to users; cost, data usage, and
power consumption are also important.

Unfortunately, the current network stack makes it
hard to optimize for these without negatively affect-
ing the user experience (e.g., connections break when
switching interfaces). With Serval, however, our con-
trol framework can continuously evaluate the device’s
state against user policy goals, allowing it to make de-
cisions on how to better use the network resources.
For example, a user with data caps might have a policy
that migrates connections to the WiFi network when-
ever it has a sufficiently strong signal, reducing the
amount of data sent on the cellular interface. In ad-
dition, Serval’s support for multiple flows allows it
to get data from multiple interfaces at the same time
and supplement data from cheap but spotty connec-
tions (such as WiFi) with more reliable but expen-
sive ones (such as cellular networks). The ability to
have multiple flows open at the same time also de-
creases the switchover time from one interface to an-
other, as its three-way handshake is performed prior
to the switchover.

Figure 2 illustrates our policy control framework
in a live experiment, migrating flows back-and-forth
between WiFi and cellular depending on connectiv-
ity. Serval is able to seamlessly stream music (Google
Play Music), by having a Serval controller inject pol-
icy decisions into the network stack that (1) prefer
WiFi over cellular and (2) rate limit traffic on the cel-
lular interface to 500 Kbps (equivalent to the playback
rate of the application). This policy allows the ap-
plication to prefetch songs over its WiFi link, which
reduces demand on the cellular connection (which is
typically governed by monthly data-plan limits).

II.C. Implementation and deployment

Our Serval stack runs natively in the Linux kernel as a
module, which can be loaded into an unmodified and
running kernel. This allows incremental deployment
alongside the unmodified TCP/IP stack, with applica-
tions having the option to fall back to TCP/IP when
Serval is not deployed at both end-points.

While applications require small modifications to

Figure 2: One of the authors uses a Serval-enabled
Android phone to stream music while walking across
the Princeton campus. The phone migrates the con-
nection between available WiFi (red) and cellular
4G (white) networks, without the reliable connection
breaking. The opacity of each data point is an indica-
tor of the throughput achieved at that location.

use Serval’s BSD sockets family, a translator also al-
lows unmodified applications to communicate with
Serval end-points (and vice versa). In fact, two trans-
lators can serve as a wide-area Serval “tunnel” be-
tween two unmodified end-points. As one example,
the experiment in Figure 2 had the smart phone di-
rect its traffic to an on-phone TCP-to-Serval transla-
tor, which connected to a remote Serval-to-TCP trans-
lator, which in turn communicated with the original,
unmodified destination.

The complete Serval source code can be found at
http://www.serval-arch.org/.

III. CRYSTAL and its role in re-
silience

Serval effectively exploits available diversity, provid-
ing resilience and high availability by maintaining ser-
vice connectivity as long as a path exists. To fully
exploit the power of Serval, other work in NEBULA
seeks to provide diversity to utilize.

A single software radio [14, 15] can provide mul-
tiple software stacks for network access, each of
which can make sense for a particular application with
its own network requirements. If multiple software
stacks can coexist and operate concurrently, we have
virtualized the software radio, sharing some hardware
resources, but providing multiple ways to reach one
or more networks. Finally, multiple software radios
could collaborate [16] to provide a more resilient set
of access points, analogous to the pool of computers
accessible through cloud computing infrastructures.

CRYSTAL (for Cognitive Radio You Share, Trust
and Access Locally), as shown in Figure 3, is capable
of running multiple virtual radio applications concur-
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Figure 3: CRYSTAL device architecture.

rently. These radio applications define the lower lay-
ers of the network stack, providing the needed physi-
cal and data link layer functionality for wireless com-
munication to occur. They provide the bridge between
wired network resources and wireless client devices.
A cloud of these CRYSTAL devices deployed with
great spatial diversity (e.g., in homes) can provide a
scalable, flexible wireless edge for future Internets.

The PHY virtualization layer must separate and
combine the signal waveforms from each virtual ra-
dio application. This multiplexing occurs in one of
the guest virtual machines reserved for the purpose.
The multiplexer receives waveforms from each appli-
cation and mixes them, producing a wideband signal
composed of the incoming waveforms, which then
gets passed to the software radio for transmission.
Similarly, the wideband signal received by the soft-
ware radio is passed first to the multiplexer, which
produces the narrowband signals containing the indi-
vidual waveforms intended for the radio applications.
To perform this signal multiplexing, we capitalize on
advances in software radio techniques: CRYSTAL
makes use of polyphase filtering algorithms [17, 18]
that enable very efficient operation for large numbers
of simultaneous communications.

As a proof of concept of our design, we have im-
plemented a prototype CRYSTAL platform with illus-
trative applications.

III.A. Prototype CRYSTAL System

The prototype consists of a number of semi-
independent layers. At the lowest level, we have
the physical radio hardware that both sends and re-
ceives wireless signals. Specifically, we make use
of the Ettus Research USRP2 software-defined radios
equipped with Ettus Research radio front-ends and an-
tennas; the Ettus WBX transceiver front-end does ana-

log electromagnetic waveform processing, operating
from 50 MHz to 2.2 GHz. The USRP2 units also per-
form down- and up-conversion of the digitized sig-
nals, as well as the analog to digital conversion; an
on-board Gigabit Ethernet controller passes samples
encapsulated in IP packets to pass waveform samples
to the CRYSTAL software platform.

The next layer contains the virtualization infras-
tructure and operating system. The CRYSTAL proto-
type we uses the Linux Kernel-based Virtual Machine
(KVM), which leverages the x86 hardware virtualiza-
tion extensions. The KVM infrastructure consists of
a Linux management host as well as some number
of guest virtual machines. The Linux management
host contains the CRYSTAL component responsible
for channelizing and synthesizing the multiple signals
coming in and out of each guest VM from user ap-
plications. This multiplexing component uses private
virtual bridges to communicate with the user applica-
tions in the guest VMs.

To perform the multiplexing, or mixing, of wireless
signals from the guest VMs, we employ both the naive
complex-multiplication approach as well as the more
efficient polyphase synthesizer. The specific method
employed during a particular CRYSTAL instantiation
can be chosen at run-time, with the naive approach
typically being more efficient for a small number of
guest applications. The demultiplexing activities oc-
cur in a similar manner, but in reverse order. The ma-
jor difference between the multiplexing and demulti-
plexing units is that the demultiplexer must track guest
application frequency and bandwidth parameters to
ensure the correct data is delivered to the correct guest
VM. The guest VMs host the actual user-defined ra-
dio applications, while the CRYSTAL software in the
Linux management host is handling the hardware in-
terfacing and providing the virtual PHY layer abstrac-
tion to the applications.

III.B. Test Applications

A wide variety of wireless applications already exist
for the GNU Radio environment, meaning CRYSTAL
supports many important wireless protocols such as
GSM without the need to write custom software.

In the CRYSTAL prototype, we integrated some of
these existing GNU Radio applications. In particular,
we experimented with three guest domains supporting
three different wireless technologies—an OpenBTS
GSM cell, a GNU Radio digital modulation system,
and a spectrum analyzer. Figure 4 shows the output of
the spectrum analyzer for co-located GSM and GNU
Radio virtual radio applications.
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Figure 4: Spectrum analyzer: a GNU Radio GMSK
signal at −300 kHz and a GSM signal from OpenBTS
centered at 200 kHz.

OpenBTS GSM cell: In the first VM, we run an
OpenBTS GSM cell. OpenBTS is an open source
implementation of a GSM base transceiver station
(BTS).1 OpenBTS uses the USRP hardware front-end
to create a GSM base station. OpenBTS runs the over-
the-air GSM standard and uses Asterisk2 to route call
information. Unlocked mobile phones can then con-
nect to an OpenBTS as though it was a GSM ser-
vice provider’s base station; to evaluate the CRYS-
TAL prototype, we modified the information on the
SIM cards in several unlocked GSM handsets.

GNU Radio Digital Waveforms: In the second
VM, we run a digital waveform application of GNU
Radio. Originally built to communicate directly with
the USRP devices, these transmit and receive example
applications were repurposed for use with CRYSTAL.
This allows us to specify different digital waveform
settings and then run packetized data between multi-
ple USRPs.

Spectrum Analyzer: In the third guest VM, we in-
stalled a simple FFT-based spectrum analyzer, which
provides a view of the RF activities of the other guest
domains, as well as of the surrounding RF environ-
ment itself. GNU Radio provides this application as
part of its basic package. Unlike that of the other two
domains, the FFT application only receives waveform
data (no transmission occurs). Moreover, rather than
receiving a bandpass-filtered and rate-converted sig-
nal from the CRYSTAL software in the Linux man-
agement host, the analyzer is provided with all data as
received by the USRP2 unit. In this manner, the ana-
lyzer can view, but not modify, the operation of other
active guest applications.

1http://openbts.sourceforge.net/
2http://www.asterisk.org/

����
����

��
��	�
��
*�����

�������
�������������

�����

�������
������
���

��
���

��
���

Figure 5: A Serval-enabled mobile device select-
ing between multiple upstream backhaul networks ex-
posed by CRYSTAL.

IV. Integrating Serval and CRYSTAL

Combining Serval’s flexible end-point network stack
with CRYSTAL’s flexible wireless link instantiation
could be quite powerful. After all, Serval’s stack and
layering model allows applications to effectively and
transparently “scavange” whatever network connec-
tivity is available. But, it is limited to the smaller set
of physical layer technologies available to it; a limita-
tion not shared by software radios.

In a scenario that couples both technologies, a
CRYSTAL base station can provide one or more wire-
less interfaces to local clients, and in turn leverage one
or more upstream providers through both wired and
wireless backhaul. In doing so, the CRYSTAL soft-
ware radio can expose this diversity of backhaul con-
nectivity to the edge clients they serve.

Figure 5 illustrates this combination for the simpler
case of a Serval-enabled mobile device making use
of multiple backhaul networks exposed over a single
WiFi physical interface. After learning of these net-
work options, some mobile device agent can instan-
tiate multiple virtual network interfaces locally, one
of each backhaul network. Then, the virtual interface
should appropriately address or tag packets so that the
CRYSTAL access point can map them to the appro-
priate upstream link. In this fashion, the Serval stack
can treat these as regular network interfaces it can use
for migration, multi-path transport, etc. Thus, in the
context of a resilient future Internet architecture such
as NEBULA, this combination allows the mobile edge
to better exploit multiple paths defined by the diverse
backhaul possibilities.

V. Conclusions

The NEBULA Future Internet Architecture project
envisions a more resilient Internet to support cloud
computing. We have described two example com-
ponents, Serval and CRYSTAL, that support new re-
silience models at the network edge. Serval exploits
an available diversity of network paths, as may be of-
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fered by different wireless links, and CRYSTAL intro-
duces a flexible substrate with which multiple forms
of wireless diversity can be offered. These two ap-
proaches complement one another, and we are cur-
rently exploring their integration.
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