
Scaling IP Multicast on Datacenter Topologies

Xiaozhou Li and Michael J. Freedman
Princeton University

ABSTRACT
IP multicast would reduce significantly both network and server
overhead for many datacenter applications’ communication. Unfor-
tunately, traditional protocols for managing IP multicast, designed
for arbitrary network topologies, do not scale with aggregate hard-
ware resources in the number of supported multicast groups. Prior
attempts to scale multicast in general settings are all bottlenecked
by the forwarding table capacity of a single switch.

This paper shows how to leverage the unique topological structure
of modern datacenter networks in order to build the first scale-out
multicast architecture. In our architecture, a network controller care-
fully partitions the multicast address space and assigns the partitions
across switches in datacenters’ multi-rooted tree networks. Our ap-
proach further improves scalability by locally aggregating multicast
addresses at bottleneck switches that are running out of forwarding
table space, at the cost of slightly inflating downstream traffic. We
evaluate the system’s scalability, traffic overhead, and fault tolerance
through a mix of simulation and analysis. For example, experiments
show that a datacenter with 27,648 servers and commodity switches
with 1000-entry multicast tables can support up to 100,000 multicast
groups, allowing each server to subscribe to nearly 200 multicast
groups concurrently.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design

Keywords
IP Multicast; Datacenter Networks; Scalability

1. INTRODUCTION
Many datacenter applications rely on multicast communication

patterns, such as publish-subscribe services for data dissemina-
tion [31], web cache updates [33], system monitoring [28], and so
on. Further, emerging datacenter virtualization standards that bridge
multiple subnets into one large layer-2 VLAN, such as VXLAN [27]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CoNEXT’13, December 9-12, 2013, Santa Barbara, California, USA.
ACM 978-1-4503-2101-3/13/12.
http://dx.doi.org/10.1145/2535372.2535380.

and NVGRE [39], often translate broadcasts in the virtualized sub-
net into multicasts in the physical network. IP multicast offers a
prime means to support these types of communication, as it greatly
conserves network bandwidth and reduces server load.

Unfortunately, IP multicast is often unscalable and unstable [11],
which causes network operators to eschew its use. While various
multicast protocols have been developed by researchers over the past
two decades to address reliability [8, 13, 3], security [22, 2], and
congestion control [44], our work aims to scale multicast in terms
of the number of supported multicast groups in datacenter networks.
We believe this to be an important enabling property for the adop-
tion of datacenter IP multicast. Scalability limitations arise because
switches only support limited numbers of multicast addresses in
their forwarding tables (e.g., 100s to 1000s of entries [30]). This
problem is compounded because multicast addresses are not topo-
logically assigned and thus cannot be hierarchically aggregated in
the traditional fashion. Network failures also introduce challenges
for IP multicast. Rerouted or retransmitted packets may be resent
to large numbers of group subscribers, and reconstructing multicast
trees is an expensive process.

While these problems with IP multicast are not new and have
been well documented in both ISP and enterprise networks [11],
we reconsider possible solutions by leveraging the unique topolog-
ical properties of modern datacenter network architectures. The
multicast addressing and routing mechanisms we present scale to
much larger numbers of multicast groups than in previous designs,
while providing greater robustness to switch and link failures. In
particular, we address IP multicast within datacenter networks that
are multi-rooted trees [6, 15, 29, 26]. We exploit the properties of
these network topologies to make four key contributions.

First, we introduce a general method for scaling out the number
of supported multicast groups. Rather than treating each switch as
an independent entity—as done by all prior work, perhaps given
their starting point using fully decentralized control protocols like
IGMP—we leverage ideas from scale-out storage systems to par-
tition the multicast address space and distribute address partitions
across cooperating switches. In particular, all “core” switches in the
datacenter network act as one cooperating set, as well as each set of
upper-layer switches in each datacenter network “pod”. Yet because
the aggregate capacity of each pod’s upper layer is less than that of
the core layer, the number of groups supported by the datacenter de-
pends on a number of factors, which we later quantify. In summary,
however, this mechanism allows a fat-tree network, when composed
of more than 27K servers and with switches holding at most 1000
group addresses, to support 4K to 30K multicast groups (depending
on the distribution and placement of group members).

Second, we further increase the network’s group capacity through
local multicast address aggregation. Unfortunately, multicast ad-



dresses do not naturally aggregate into compact IP prefixes, as group
members may be spread across the network. Instead, we introduce
a novel indirection and rewriting mechanism that aggregates local
groups into virtual meta-groups for addressing and routing. In doing
so, we provide an efficient heuristic to the NP-Hard channelization
problem [5], while minimizing additional downstream traffic load
arising from such aggregation. With local meta-groups, the same
network as above supports 10K to 100K multicast groups.

Third, we provide mechanisms that are resilient and adapt quickly
to switch and link failures. In particular, prior to initiating or during
the process of multicast tree reconstruction for longer-term failures,
we support fast failover through local multicast rerouting. This
rerouting avoids redundant traffic caused by rerouting or retransmit-
ting multicast packets.

Finally, the new multicast mechanisms we introduce are deploy-
able in today’s switches. Namely, they can be implemented us-
ing OpenFlow-compliant switches [32]—which support prefix for-
warding, multicast addresses, packet rewriting, and a remotely-
configurable forwarding plane—and software-defined networking
(SDN) controllers for remote management. In particular, each set
of cooperating switches (i.e., at the core level and in each network
pod) can be managed independently for both address allocation
and failure recovery. Our mechanisms should also be applicable to
datacenter networks primarily using layer-2 forwarding (e.g., [29]),
although we do not further detail such approaches.

2. TOWARDS SCALABLE MULTICAST
We next review the current challenges in using IP multicast within

datacenters. We also detail the opportunities provided by emerging
multi-rooted trees as datacenter network topologies, as well as the
use of software controllers to remotely manage switches.

2.1 Limitations of Today’s IP Multicast
Many datacenter services use group communication that could

benefit greatly from multicast. However, current IP multicast pro-
tocols face severe scalability challenges, largely in terms of the
number of supported multicast groups and their robustness against
network failures. These challenges arise in both control and data
planes of the network.

In the control plane, most current multicast deployments use
IGMP [10] to manage group membership and PIM protocols [12,
18, 17] to construct multicast routing trees. Such protocols require
the switches1 to track the status of all associated groups, which
may involve many control messages and periodic queries to each
broadcast domain. Switches need additional memory to handle these
control-plane tasks; this serves to limit the number of supported
multicast groups [43]. Further, existing multicast protocols behave
poorly with network failures. A single point of failure may affect
many multicast trees, and reconstructing a multicast tree may need
many network communication and redundant states in switches.

The number of multicast groups is also limited by multicast for-
warding table sizes in switches. Multicast addresses cannot be
aggregated by prefixes; thus, a switch has to maintain per-group
routing rules for all associated multicast groups. Though the hard-
ware implementation of multicast forwarding may vary for different
switches, the number of multicast entries that a switch supports is
typically a scarce resource. This is particularly true for the com-
modity switches common to datacenters, which have much smaller
forwarding tables than the high-end routers found in ISP networks,

1We use the term switches and routers indistinguishably. Datacenter
network devices handle both layer-2 and layer-3 traffic, and they
support a variety of management and routing protocols.

and even less rule-table space available to multicast entries. For
example, benchmarks conducted in 2008 found popular commodity
switches to support as few as 70 and as many as 1500 multicast
addresses per switch [30].

2.2 Next-Generation Datacenter Architecture
Given the dynamic nature of datacenter traffic and the significant

network demands of data-centric processing, modern datacenter
network designs seek to provide high bisection bandwidth, reducing
or even eliminating any network oversubscription. To do so, the
research community has extensively studied the use of multi-rooted
tree network topologies (e.g., the Clos network [15] or its fat-tree
variants [6, 29, 26]), and such topologies are beginning to be de-
ployed in production [15, 1]. This makes them an attractive target
for further investigation, as opposed to some more radical design
proposals that use more exotic topologies [16, 4, 37, 38]. While
the multicast techniques described in this paper generalize to multi-
rooted tree topologies, we focus our design and evaluation on the
fat-tree network.

Figure 1 shows three examples of fat trees built with 4-port
switches. In general, a 3-tiered fat tree consists of a top layer of core
switches and multiple pods. Each pod has two layers of switches:
the edge switches that connect to end hosts and the aggregation
switches that connect to the core layer. Each pod switch uses half of
its ports to connect with higher-level switches and the other half for
lower-level devices. All core switches are connected to every pod,
and all aggregation switches are connected to every edge switch in
the same pod. With such a design, all hosts can communicate with
any other host at full bandwidth of their network interface through
multiple equal-cost paths. The difference between the three types
of fat trees in the figure is mainly related to their behavior under
failure, as discussed later.

2.3 Scale-Out IP Multicast in Datacenters
With an eye towards the multi-rooted tree topology of datacenter

networks, we introduce three techniques to increase the number of
multicast groups and enhance communication robustness against
common network failures. Here, we present a high-level motivation
and description of these techniques, while Section 3 specifies our
algorithms and provides analysis justifying each technique.

1. Partition and distribute the multicast address space to in-
crease the number of groups at core and aggregation layers. To
leverage the potential advantages of a multi-rooted tree topology,
we partition the multicast address space into multiple blocks with
unique prefixes. Each partition is assigned to some core switches
at the top level, and to some aggregation switches in every pod. So,
each core or aggregation switch only has a fraction of the multicast
address space. Yet, the system coordinates the forwarding state be-
tween switches, so that the entire multicast forwarding state is stored
collectively by all core switches, and by all aggregation switches in
each pod (similar to keyspace partitioning in scale-out storage [23]).

With such an approach—which we refer to as multicast address
distribution—the datacenter network as a whole can support many
more groups than the capacity of a single switch. When combined
with the multi-rooted tree topology, these partition assignments
ensure that multicast packets of each group still have a sufficient
number of equal-cost paths to reach all group members.

2. Enable local multicast address aggregation to further in-
crease the number of groups in each pod. Multicast addresses
are hard to aggregate, since they are not assigned based on locations.



Core 

Aggregation 

Edge 

Pod 

(a) “Standard” fat tree [6]

Core 

Aggregation 

Edge 

Pod 

(b) Portland fat tree [29]

Core 

Aggregation 

Edge 

Pod 

(c) AB fat tree [26]

Figure 1: Three types of fat tree topologies built with 4-port switches. All use a basic pod structure with fully connected aggregation and edge
switches, and differ only in the connectivity between core and aggregation switches. Pods using different connectivity patterns in each network
are represented by different colors.

We introduce a local aggregation2 mechanism to aggregate multicast
entries in switches, by locally rewriting the addresses of groups with
same or similar forwarding state to new local addresses sharing a
common IP prefix. In this fashion, the switch can forward multicast
packets through prefix matching.

This process requires per-group address translation in switches
both above and below the layer of interest (which in this figure is the
aggregation layer): the layer above maps the real multicast address
to a new, local address, and the layer below maps it back to its real
one. To enable the greatest scalability, the layer of interest across
which this occurs should be the pod’s bottleneck in terms of the
number of supported groups.

Local group aggregation may cause redundant traffic on down-
stream links, as all traffic to the common prefix will be sent out all
downstream ports that have groups sharing the prefix. We model
this problem—minimizing link congestion while aggregating groups
subject to switches’ multicast address capacity—as an optimization
problem. While this problem is NP-hard, we provide an heuristic
that aggregates groups effectively with low cost.

3. Handle failures with fast rerouting and multicast tree recon-
struction. It usually takes a longer period for multicast routing to
recover from network failures, since reconstructing a multicast tree
is more complex than recomputing a unicast route. Thus, instead of
waiting for the multicast tree to be reconstructed every time a failure
occurs, we seek to quickly reroute the packets to bypass the failed
links or switches, especially when dealing with short-term failures.

Recent work [26] shows how to rapidly restore unicast routes
after a switch or link failure, by using local rerouting. However,
rerouting multicast traffic introduces its own challenges, as a switch
may re-multicast a rerouted packet to all group members, even if
most are not affected by the failure. This would introduce lots of
redundant traffic.

To enable local rerouting in multicast, we add a location identifier
to the headers of the rerouted packets. This allows switches to
know where to forward the rerouted packet (i.e., to which pod),
without causing unnecessarily duplicated traffic. Our evaluation
shows that such local rerouting yields both low route stretch and high
availability. While such rerouting occurs, the network controller can
recompute the multicast routing tree (with less urgent priority) and
disseminate updated rules to the appropriate switches.

2.4 Managing Multicast using SDN
Rather than using decentralized management protocols like IGMP,

emerging standards in software-defined networking (SDN) [32] pro-
2There is some risk of terminology confusion here: address aggre-
gation corresponds to grouping together like multicast addresses
under the same multicast IP prefix, while an aggregation switch
is the standard term for the upper-layer switch in each pod, as it
aggregates connections to the core layer.

vide new opportunities for programmatic control and global visi-
bility over network switches. Our design assumes the datacenter
runs an SDN platform with centralized or distributed software con-
trollers to manage the membership of multicast groups, to compute
multicast routing trees, and to disseminate forwarding rules to the
appropriate switches. We designed our protocols to use features
found in today’s OpenFlow-enabled commodity switches, which are
commonly capable of prefix routing, multicast forwarding, VLAN
tagging, rewriting packet headers, and group operations. Such SDN
architectures have already been deployed in production datacenters
(e.g., [24]), as well as in backbone networks linking datacenters
(such as by Google [20]).

Rather than having switches query their subnets to determine
multicast group membership (as in IGMP), network controllers can
collect information about the group subscriptions of virtual ma-
chines (VMs). Our architecture is agnostic about how this informa-
tion is collected. For example, datacenters using a centralized VM
manager (like VMWare vSphere) can have this manager pass such
information to the controllers directly; alternatively, each server’s
hypervisor can keep track of the group memberships of its VMs and
inform its controller(s) about any changes. Both approaches reduce
the control overhead and memory use at switches.

Our protocols can be easily supported by fully distributed network
controllers (e.g., Onix [24]). One of the controllers can compute
the initial address partitioning and switch assignment when the
network is brought online. Then each controller can compute the
local address aggregation for switches in its subnet, and update
multicast forwarding tables in the local switches in response to the
group join/leave events or network failures in the subnet. Recent
studies show that a network controller running on a commodity
server can handle 1.6 million requests per second [41], and today’s
OpenFlow switches can set up 600-1000 flows per second [34],
enough to handle common multicast group dynamics.

2.5 Related Work
Given the large body of research literature on IP multicast, we re-

strict our consideration to those proposals applicable in datacenters.
In short, to our knowledge, no prior work introduces a scale-out
design for datacenter multicast.

PortLand [29] supports multicast routing on fat trees, as well as
multicast tree reconstruction, but does not address any scalability
issues. ESM [25] leverages the hierarchical topology to accelerate
the multicast tree computation process, but again, it does not utilize
the multi-rooted tree’s properties to scale beyond the capacity of a
single switch.

Several other proposals seek to increase the number of multicast
groups that can be supported by a single switch; work that is comple-
mentary to our interests in scaling out capacity by leveraging many
switches and datacenter topologies. For example, some proposals



C multicast address capacity of a switch
k # of ports per switch
n # of partitions of the multicast address space
rc # of core switches with the same partition
ra # of aggr switches with the same partition in each pod
rp # of pods over which a group spreads on average
re # of edge switches over which a group spreads in each pod

on average

Table 1: Key notations and definitions in this paper

use Bloom filters to reduce multicast forwarding states. FRM [35]
encodes group addresses into group Bloom filters in routers, while
LIPSIN [21] and ESM [25] encode forwarding states into Bloom
filters carried in packet headers. The overhead of these approaches
arise from the trade-off between Bloom filter sizes and their false-
positive rates (which lead to unnecessary multicast transmissions).
To keep false-positive rates manageable, such approaches would
lead to prohibitively large filters given the number of multicast
groups we seek to support.

Dr. Multicast [43] scales multicast by only supporting real IP
multicast operations to selected addresses that fit within a single
switch’s capacity, and otherwise using iterated unicast by end hosts.
This approach can expose large numbers of multicast groups to
applications, but sacrifices network bandwidth and server load to
do so. Dr. Multicast also aggregates multiple groups with similar
members into one group, but again in a manner to fit in a single
switch’s forwarding table. Such network-wide aggregation is not as
scalable or efficient as our pod-based aggregation (see §3.2.2).

3. SYSTEM DESIGN
We now detail our IP multicast mechanisms for datacenters and

analyze their scalability and fault tolerance.

3.1 Multicast Address Distribution
Recall that we partition the multicast address space into multiple

blocks and assign these partitions to core switches and aggregation
switches in each pod. Using such a strategy, the core switches can
cooperatively support a much larger number of multicast groups
across the entire datacenter. Similarly, each pod’s aggregation layer
can support a larger number of groups within its pod.

3.1.1 Calculating the Multicast Group Capacity
Before detailing the distribution process for the multicast address

space, we briefly analyze the number of multicast groups (or group
capacity) supported by a fat-tree datacenter network. We assume
the partitioning parameters from Table 1.

A 3-tiered fat tree with k-port switches can support a total of k3/4
end hosts, connected by k2/4 core switches and k pods, each with
k/2 aggregation and k/2 edge switches [6].

Let C denote the number of multicast addresses supported by a
single switch. If we partition the multicast address space into n
blocks with unique prefixes, and assign each partition to rc core
switches (“r” for replication factor), then the maximum number of
multicast addresses that can be supported by the core layer is

Ccores =
k2

4rc
·C (1)

If each partition is assigned to ra aggregation switches in each
pod, then the maximum number of multicast addresses supported

by the aggregation layer of each pod is

Caggrs =
k

2ra
·C (2)

Suppose the host members of each group in a pod spread across
re edge switches on average, then the multicast addresses capacity
of the edge layer in the pod is

Cedges =
k

2re
·C (3)

Figure 2 shows an example of multicast address space distribution
in a 3-tiered fat tree with 8-port switches, with n= rc = 4, and ra = 2
for all pods. The network can support up to 4C groups at the core
layer, and each pod’s aggregation layer can support up to 2C groups.

In practice, for a datacenter network with k = 48-port switches,
each holding C = 1000 multicast addresses, if we set n = 64 and
rc = 9, then the core layer of the network can support up to 64,000
multicast addresses. This scale is far beyond the group capacity of
any current multicast system. We will further discuss each pod’s
address capacity in §3.2.

3.1.2 Distributing the Multicast Address
Figure 2 provides an intuition on how to distribute multicast

addresses to increase the system’s group capacity. Some common
steps in multicast address distribution include:

1. Choose the values of n, rc and ra. Smaller values of rc and ra
lead to increased system capacity of multicast addresses, while
greater values of rc and ra give better fault tolerance and load
balance for multicast routing.

2. Partition and allocate the multicast address space, as the connec-
tivity pattern between the pods and core switches affects how
to assign address partitions to switches. Each core or aggrega-
tion switch with an address space partition should connect to
at least one switch with the same partition at the other layer. It
only needs to be processed once when the datacenter network is
brought online.

3. Assign a multicast address to every new group. The new address
should belong to a partition with (1) fewer addresses currently in
use and (2) fewer addresses associated with heavy-traffic groups,
if necessary.

The concrete algorithm for allocating address space partitions
varies for different types of fat trees. Here we list three types of well
studied fat trees,3 with simple examples built with 4-port switches
shown in Figure 1.

• The “Standard” [6] fat tree (Fig. 1a) uses the same connection
pattern in all pods. Distributing multicast addresses in a standard
fat tree is very simple. However, it does not perform well when
network failures occur [26].

• The PortLand [29] fat tree (Fig. 1b) has a different connection
pattern for each pod, yielding a more complex network struc-
ture. It can handle network failures better, although its multicast
address distribution is more complex.

• The AB [26] fat tree (Fig. 1c) improves routing fault tolerance.
AB fat trees have two different types of pods (“A” and “B”),
each with different connection patterns. Its address distribution
algorithm is relatively simple: first allocate the address partitions

3The ‘Standard” and PortLand topologies were not explicitly for-
mulated in their papers, but rather just illustrated (see Fig. 3 in [6]
and Fig. 1 in [29]).



00/ 

00/ 
01/ 

00/ 01/ 01/ 00/ 00/ 01/ 01/ 10/ 11/ 11/ 10/ 10/ 10/ 11/ 11/ 

00/ 
01/ 

10/ 
11/ 

10/ 
11/ 

01/ 
11/ 

01/ 
11/ 

00/ 
10/ 

00/ 
10/ 

01/ 
11/ 

01/ 
11/ 

00/ 
10/ 

00/ 
10/ 

00/ 
01/ 

00/ 
01/ 

10/ 
11/ 

10/ 
11/ 

Figure 2: Example of multicast address distribution in a 3-tiered AB fat tree with 8-port switches. Each 2-bit prefix represents a partition.
Each switch stores separate forwarding rules for all multicast addresses with associated partition prefixes. Red and blue colors represent the
two different connection patterns between pods and core switches.

Algorithm 1 Multicast Address Distribution in AB Fat Trees

Require: n · rc = k2/4, r2
a = rc, 2ra|k.

1: function DISTRIBUTION(k, n, rc, ra)
2: Np← 2nra/k . number of partitions in each aggr switch
3: aggrS← aggr switches of a type-A pod
4: for ia in [0, k/2) do . each aggr switch
5: coreS← core switches connected to aggrS[ia]
6: ic← 0 . index of coreS
7: R← bia/rac . the range index of the partitions to be assigned
8: for R ·Np ≤ ip < (R+1) ·Np do . assign Np partitions
9: ASSIGN(partition[ip], aggrS[ia])

10: for 0≤ count < rc/ra do
11: ASSIGN(partition[ip], coreS[ic])
12: ic← ic +1
13: for all other pods do
14: aggrS← aggr switches of the pod
15: for ia in [0, k/2) do . each aggr switch
16: coreS← core switches connected to aggrS[ia]
17: for ic in [0, k/2) do
18: ip← the partition assigned to coreS[ic]
19: ASSIGN(partition[ip], aggrS[ia])

to the core switches and aggregation switches in one pod, then
assign each aggregation switch in other pods with all the partitions
in the core switches connected to it.

The AB fat tree is both structurally simple and more fault tolerant,
so we focus on its use for much of this paper. Algorithm 1 shows
an example of address distribution with the given parameters for
an AB fat tree. Due to the topological simplicity of AB fat trees,
partition assignments made to one pod determine the assignments
in all other pods. The algorithm first assigns the address partitions
to the aggregation switches in a type-A pod, then to core switches
connected to each aggregation switch in that pod accordingly. Fi-
nally, each aggregation switch in all other pods is assigned all the
partitions of the core switches to which it connects. This algorithm
runs only once when the datacenter network is brought online.

Additional optimizations for managing forwarding table space
could be explored. For example, multicast addresses for impor-
tant, popular, and/or long-lived groups can be replicated at more
switches. On the other hand, addresses for groups rapidly changing
could be replicated at fewer switches, to reduce the switches’ up-
date load.With sufficient multicast address replication in both core
and aggregation layers, we can apply similar load-aware [7, 36] or
load-agnostic [15, 9] flow-scheduling techniques for load balancing
and traffic engineering. We leave the further exploration of these
optimizations and techniques to future work.

For more general multi-rooted tree networks, C and k in Table 1
may be different for the core, aggregation, and edge switches. In this

case, the detailed address distribution scheme needs to be adjusted
for specific network settings, but the key approach and its effect
on scaling the number of multicast groups remain the same. For
example, a datacenter may have fewer core switches, each with more
ports and higher multicast address capacity. Then each core switches
can be assigned more address partitions, which will not affect the
scalability of multicast group numbers of the whole network.

3.2 Scaling Address Aggregation in Pods
Earlier, we showed that the number of multicast groups supported

by the aggregation and edge layer in each pod is much lower than
that of the core layer (Eq. 1, 2, 3), which results in the core layer
being under-utilized, especially if many pods have similar groups.
In this section, we analyze the multicast address capacity in the
pods, and propose a technique using local address translation and
aggregation to further increase the number of groups in each pod.

The bottleneck for a pod’s group capacity may arise at either
its aggregation or edge layer, depending on how many addresses
are stored by each layer’s switches. This number depends on both
the network configuration and the distribution of end-host’s group
memberships. Given these two layer’s capacities (Eq. 2 and 3), the
maximum number of supported multicast groups in a pod is

Cpod =
C · k

2 ·max(ra,re)
, (4)

which means a pod’s group capacity is limited by the bottleneck
layer in the pod that can support fewer groups.

In this section, we introduce a new scheme that increases the
number of groups supported in a pod to the group capacity of the
non-bottleneck layer, i.e., calculated with the min of (ra,re) in the
denominator of Eq. 4. This leads to a significant improvement if the
values of ra and re differ greatly.

Let rp denote the average number of pods over which a group
may spread, pm denote the percentage of groups across multiple
pods. In combination with Eq. 1, the maximum number of supported
multicast groups of the system is

Csystem = min(Ccores/pm , ∑pod Cpod/rp). (5)

3.2.1 Apply Local Address Aggregation
To increase the multicast address capacity in a pod, we intro-

duce an address translation mechanism to enable multicast address
aggregation at the bottleneck layer. With local aggregation, the
bottleneck layer in a pod can support as many groups as the other
layer’s address capacity.



A0 

000	   to	  E0,	  E2	  
001	   to	  E1,	  E3	  
010	   to	  E1,	  E3	  
011	   to	  E0,	  E2	  

000	   …	  
011	   …	  

E0 E3 

C0 
000	   to	  A0,	  …	  
001	   to	  A0,	  …	   C1 

10*	   to	  E0,	  E2	  
11*	   to	  E1,	  E3	  

000	   to	  A0	  (-‐>100),	  …	  
001	   to	  A0	  (-‐>110),	  …	  

100	   (-‐>000),	  …	  
101	   (-‐>011),	  …	  

upper layer 

lower layer 

bottleneck switch  

010	   to	  A0	  (-‐>111),	  …	  
011	   to	  A0	  (-‐>101),	  …	  

A0 

E0 E3 

C0 C1 

010	   to	  A0,	  …	  
011	   to	  A0,	  …	  

addr	   ac)on	  

upper layer 

lower layer 

bottleneck switch  

Figure 3: Example of local group aggregation. Action -> signifies
rewriting the destination address to that specified. A0’s multicast
forwarding table has 4 entries initially (up), but 2 entries after local
aggregation (bottom).

Suppose the network controller wants a bottleneck switch with
multicast address capacity C to support N(> C) groups. It can
aggregate the N groups into M (≤ C) meta-groups, and assign a
unique prefix to each meta-group. The multicast groups in each
meta-group have the similar forwarding states in the bottleneck
switch, and they are assigned new local addresses that share their
meta-group’s prefix.

The switches above and below this bottleneck layer maintain
a map between the global and local multicast addresses, and for-
ward multicast packets to the bottleneck switch with translated local
addresses. Then, the bottleneck switch forwards the multicast pack-
ets based on local meta-group prefixes. The lower-layer switches
rewrite local addresses back to their original global ones. If such ag-
gregation is applied at an edge switch, this lower-layer functionality
must be performed on soft switches running on each end host.

Figure 3 shows an example in which the bottleneck arises at the
aggregation switches. As shown, the aggregation switch initially has
to keep one entry for each group; after local address translation and
aggregation, the aggregation switch only needs to keep two entries
for the two meta-groups.

3.2.2 The Multicast Group Aggregation Algorithm
Figure 3 shows an ideal case for group aggregation, where groups—

in this example, (000 and 011) and (001 and 010)—have multicast
receivers at the identical edge switches. Thus, these groups have
identical forwarding state in higher-layer switches. In practice,
however, multicast groups in the same meta-group usually do not
have exactly the same forwarding state, which results in lower-layer
switches or hosts receiving traffic from multicast groups to which
they do not subscribe.

Therefore, we want an aggregation algorithm that minimizes
unnecessary network load, or cost. The general group aggrega-
tion problem (sometimes called the channelization problem) is NP-

complete [5], although various heuristic solutions have been pro-
posed [5, 40, 43]. Compared to prior work, however, our solution:

1. Scales much better due to its decomposition into many smaller
independent subproblems, since groups only need to be aggre-
gated locally to increase the bottleneck’s capacity. Each one only
has k/2 possible outgoing ports, and at most C · ra or C · re/ra
groups to be aggregated. Both numbers are much smaller than
those in traditional problems. This reduces the network and com-
putational overhead by orders of magnitudes. For a datacenter
with distributed network controllers, each controller only needs
to compute the local aggregation for switches in its subnet.
On the contrary, past projects tried to aggregate all multicast
groups across the entire network, where the number of possible
members (VMs) across all groups may reach hundreds of thou-
sands or more. This scale makes groups with similar members
much less common, and the computation very slow.

2. Can be applied with a more realistic model. While traditional
group aggregation methods assume routing paths to all receivers
have a same linear cost function, our model is able to handle the
real-world link cost function, which could be nonlinear and con-
vex because additional traffic increasingly degrades performance
when links become congested. This is much more computa-
tionally expensive for traditional approaches that operate on the
whole network.

Algorithm for group aggregation. To design an effective algo-
rithm for local group aggregation, we first model it as a characterized
channelization problem [5], and introduce a practical optimization
objective function. Suppose we have following initial sets for a
bottleneck switch:

• A set of downlink ports P, where |P|= k/2.

• A set of multicast groups G.

• A set of meta-groups M, where |M| ≤C.

For g ∈ G, p ∈ P, m ∈M, define three types of sets:

• Pg = {p | p subscribes to g}
• Gm = {g | g is assigned to m}
• Mp = {m | p subscribes to m}= {m | ∃ g ∈ Gm∧ p ∈ Pg}

Let λg denote the traffic rate of group g, F(.) denote the conges-
tion cost function on a downlink of the bottleneck switch, and µp
denote the background traffic (e.g., unicast) rate over the downlink
of port p. Then given input sets Pg for each g, we want to find opti-
mal aggregation sets Gm and Mp to minimize the total congestion
cost (Φ) of all links after local aggregation:

Φ(G, M) = ∑p F
(

∑m∈Mp

(
∑g∈Gm

λg
)
+µp

)
(6)

The optimization problem is NP-hard, so we provide an heuristic
method to greedily assign values Gm under the constraints, while
keeping the value of the optimization objective cost function Φ as
low as possible. Algorithm 2 shows the core part of our heuristic
method. COST(g,m) computes the increase in Φ if group g is
assigned to meta-group m, and δ (g,m) computes the cost threshold
to create a new meta-group. The running time of the algorithm is
O(|G| · |M| · |P|), which is equal to O(k ·C · |G|).

To handle churn in the group membership (Pg) and changes in the
traffic rates (λ , µ), we track cost changes on groups or meta-groups,
and then recompute the aggregation if necessary. The track function
can be either run periodically, or it can be triggered by certain group
membership or traffic rate changes.



Algorithm 2 Multicast Group Local Aggregation

1: function AGGREGATION(X)
2: M̃←M−{m0, . . . ,m|P|} . initial set of empty meta-groups
3: for g ∈ G do
4: if |Pg| ≥ |P|−∆ then
5: ASSIGN(g, m|P|) . m|P| forwards to all ports
6: else if |Pg|= 1 then
7: p← p ∈ Pg
8: ASSIGN(g, mp) . mp only forwards to port p
9: else

10: ḿ← argmin
m∈M̃

COST(g, m) . minimal extra cost

11: if |M|> 0 and COST(g, ḿ)> δ (g, ḿ) then
12: m← M̃.pop() . create new meta-group
13: ASSIGN(g, m)
14: else
15: ASSIGN(g, ḿ)

16: function ASSIGN(g,m) . assign group g to meta-group m
17: update Gm, Mp, Φ(G, M) and other auxiliary data

3.3 Recovering Quickly from Failures
Network failures in datacenters may significantly impact network

performance, especially for multicast traffic, since reconstructing
the multicast tree can be an expensive process. A recent study [14]
shows that many of the failures in datacenter networks are short
term, however, so immediately reconstructing the multicast tree can
be inefficient and unnecessary.

A better approach may be to have switches locally reroute the
packets immediately after a failure, and let the network controller
compute the new multicast tree in the background if necessary.
Therefore, our fault-tolerant routing solution consists of two parts:
(1) short-term local rerouting for fast failover and (2) long-term
multicast tree reconstruction.

3.3.1 Using Local Rerouting for Fast Failover
Unicast local rerouting has been well studied by Liu et al. [26]

for AB fat trees (Figure 1c and 2), from which we base our design
for multicast rerouting. Here, we focus on the unique problems
of rerouting multicast traffic, without limiting our solutions to any
specific types of fat tree.

Upstream rerouting (flows from end hosts up to aggregation or
core switches) is easy to support in our design. Because all multicast
address partitions are assigned to multiple aggregation switches in
each pod and more core switches, each edge or aggregation switch
has multiple uplinks for all its multicast addresses. Thus, if one
uplink fails, the switch only needs to forward the packets to other
upper-layer switches that are assigned with the associated partitions.

Downstream rerouting (flows from core or aggregation switches
down to end hosts) is more complex. Liu et al. [26] proposed
two downstream rerouting schemes for core switches in an AB
fat tree. Let coreSx denote the x-th core switch, and aggrSi.a and
edgeSi.a denote the a-th aggregation and edge switch in the i-th
pod. Suppose coreSx’s downlink to aggrSi.a fails, in most cases, the
packets can still reach the i-th pod by a three-hop rerouting through
an aggregation switch in other pods (e.g., coreSx → aggrS j.c →
coreSy→ aggrSi.b). In less common cases, the packets can reach the
i-th pod by a five-hop rerouting, which involves both aggregation and
edge switches in other pods (e.g., coreSx→ aggrS j.c→ edgeS j.d→
aggrS j.e→ coreSy→ aggrSi.b).

However, multicast rerouting cannot directly use such techniques.
When a core switch receives rerouted multicast packets, it would

otherwise forward them out all ports listed in its forwarding table’s
group entry. This behavior adds network overhead, as only the pod
experiencing the failure needs the rerouted packets. To make local
rerouting effective, we add a location identifier to the rerouted pack-
ets (specifying either a destination pod or edge switch), allowing
other switches to know the true destination of rerouted packets.

Core→ aggregation route failure. When a core switch notices
that its downlink to one pod fails, it seeks to reroute all multicast
packets to that pod through other pods. To avoid forwarding rerouted
multicast packets to unwanted pods, it adds a pod identifier to the
header of the rerouted packets. Other switches can then quickly
determine to which pod these packets should be sent, and they
forward them via unicast routing accordingly.

Aggregation→ edge route failure. When an aggregation switch
detects a downlink failure, it needs to reroute the packets through
other edge and aggregation switches in the same pod. The process is
similar as above. When sending a rerouted packet, the aggregation
switch adds an edge identifier to the packet header. Then other edge
and aggregation switches can tell to which edge switch they should
forward upon receiving the rerouted packet.

The location identifiers can be implemented in various ways. For
example, if using VLAN tags, a switch pushes a VLAN tag rep-
resenting the correct destination when sending rerouted packets to
other pods or edge switches. The switch in the correct destination
then pops the VLAN tag before further processing. An alternative
is to utilize some unused bits in the multicast address, e.g., these
bits could be set to zero by default, and switches could then rewrite
them to specify certain destinations. That said, the current Open-
Flow specification only supports setting the entire address to some
specified constant, not selected bits.

Edge identifiers can be reused in different pods. Thus, a data-
center built with k-port switches only needs 3k/2 VLAN tags or
dlog2(3k/2)e unused bits in the header, and each edge and aggre-
gation switch needs k/2 and 3k/2 unicast rules, respectively, to
support this multicast rerouting protocol.

OpenFlow support. There are two possible approaches to local
rerouting with OpenFlow-compliant switches. First, the switch can
include local backup rules, so that the switch will immediately figure
out what to do by itself after a failure happens. However, the current
OpenFlow specification [32] only supports backup rules for unicast
forwarding. Second, the network controller can be informed about
every network failure and then install the local rerouting rule to
associated switches.

3.3.2 Reconstructing the Multicast Tree
When long-term failures happen, we eventually want to rebuild

the multicast tree for affected multicast groups. However, with fast
failover to local rerouting, we can allow some reasonable delay until
multicast tree reconstruction, and thus lessen the computational
burden on network controllers.

After failure, if at least one core switch can still reach all the end
hosts belonging to the group, we can reconstruct the multicast tree
by changing the root core switch for corresponding groups.

If multiple failures happen, it is possible that no single core
switch can reach all group members, as the symmetry of the net-
work’s multi-rooted tree structure can be disrupted. In such cases,
the packets of the group have to be forwarded to multiple core
switches during upstream routing, and some pods may need more
than one aggregation switches to receive downstream packets. We
can reconstruct the multicast tree by solving a set cover problem for
the set of hosts and switches that are associated with the multicast
group [29].



0 50 100 150 200
Group size (a sample tenant with 200 VMs)

0.00

0.05

0.10

0.15

fre
qu

en
cy

10-3

10-2

10-1

100

CC
DF

101 102 103 104

Group size (all tenants)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

min=5, max=5000
median=11, mean=51.1

(a) Group size follows WVE distribution in each tenant.

0 50 100 150 200
Group size (a sample tenant with 200 VMs)

0.000

0.005

0.010

fre
qu

en
cy

101 102 103 104

Group size (all tenants)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

min=5, max=5000
median=133, mean=510.5

(b) Group size follows uniform distribution in each tenant.

Figure 4: Two types of group size distributions in the datacenter.

4. EVALUATION
This section evaluates the datacenter’s multicast address distribu-

tion and failover behavior through a series of simulation experiments.
Our evaluation answers the following questions:

• How do multicast address distribution and local aggregation in-
crease the number of supported groups?

• Can the network controller and switches handle common multi-
cast group dynamics?

• How do network failures affect multicast routing?

Because our primary technical focus is on multicast scalability,
we simulate full-sized datacenter topologies, rather than implement
our protocols on a small testbed. Even so, it is difficult to run packet-
level network simulation at such scale; further, we are not focused on
network throughput or latency. Instead, we first construct the entire
fat-tree network topology in simulation, then generate multicast
groups with different distributions, and statistically compute the
network’s group capacity and the performance of multicast routing
failover (in terms of route stretch and availability). We focus on
multi-tenant environments where each tenant runs multiple multicast
applications across its VMs, although our findings also apply to
settings eschewing virtualization.

As discussed in Section 2.5, our work is the first scale-out dat-
acenter multicast solution. Prior solutions were all ultimately bot-
tlenecked by the address capacity of each switch, which is orders-
of-magnitude smaller than our datacenter solution. Thus, we omit
further detailed comparison of our protocol with previous work.4

4.1 Experimental Setup
We simulate a 3-tiered AB fat-tree datacenter network built with

48-port switches, which connects 27,648 physical end hosts. We
split the multicast address space into 64 partitions, each of which is
replicated at 9 core switches and 3 aggregation switches per pod.

In our experiments, the datacenter network is populated by 3000
tenants. The number of VMs per tenant follows an exponential

4We attempted at first to construct a “scale-out” version of Dr. Mul-
ticast [43], but found ourselves recreating the algorithms introduced
in this paper, as confirmed by Dr. Multicast’s author [42].

distribution, with min = 10, median = 100, and max = 5000. Each
physical end host has at most 20 VMs.

We assume a tenant’s VMs do not share the same physical host
for reasons of resilience and load balance, and then evaluate two
types of VMs placement policies: (i) a tenant’s VMs are placed on
hosts near to one another, and (ii) a tenant’s VMs are distributed
across the network uniformly at random.

We then assign multicast groups to each tenant. Each tenant is
assigned to some number of groups roughly proportional to the
tenant’s size. Each tenant’s group sizes—the number of VMs be-
longing to that group—follow a similar distribution, although scaled
by the tenant’s size. Each group’s members in each tenant are picked
uniformly at random from among all VMs of the tenant. We set the
minimum group size to five, and evaluate two different distributions.

We generate the first group-size distribution by analyzing a trace
of multicast patterns from IBM WebSphere Virtual Enterprise (WVE),
which has 127 nodes and 1364 groups [19]. In this trace, most
groups have only a small set of members, while a few have nearly
all nodes as members. We model this WVE distribution and scale
it to each tenant’s size. Figure 4a shows the WVE distribution of
group sizes (for a particularly-sized tenant), as well the as the size
distribution across all tenants. While the average group size is 51,
nearly 80% of groups have fewer than 40 members, while about
0.4% of groups have more than 2000 members.

We generate the second distribution by setting each tenant’s group
sizes to be uniformly distributed between the minimum and entire
tenant size. Figure 4b shows such a distribution, where the average
group size is 510, which is 10 times larger than that of the WVE
distribution.

We also tested different network sizes, tenant size distributions,
and numbers of VMs per host. The key factors to scalability are
the size of multicast groups and the distribution of group members
decided by these settings. More multicast groups can be supported
when the network is larger, when the average group size is smaller,
and when the group members are closer to each other.

4.2 Multicast Address Capacity
We first evaluate how much the datacenter’s multicast address

capacity can be improved by multicast address space partition and
local aggregation. We have shown that with fixed network settings,



0 500 1000 1500 2000 2500 3000 3500
No. of multicast addresses on a switch

(la) E

E

A

C

0 500 1000 1500 2000
Traffic rate on a link

(la) E-H

E-H

A-E

C-A

(a) 100K groups. Group size follows WVE distri-
bution in each tenant. A tenant’s VMs are placed
on nearby hosts. Apply local aggregation at the
edge layer.

0 1000 2000 3000 4000 5000 6000 7000
No. of multicast addresses on a switch

(la) E

E

A

C

0 5000 10000 15000 20000 25000
Traffic rate on a link

(la) E-H

E-H

A-E

C-A

(b) 100K groups. Group size follows uniform distri-
bution in each tenant. A tenant’s VMs are placed on
nearby hosts. Apply local aggregation at the edge
layer.

0 200 400 600 800 1000 1200 1400
No. of multicast addresses on a switch

(m) E

E

(la) A

A

C

0 100 200 300 400 500 600 700
Traffic rate on a link

E-H

(la) A-E

A-E

C-A

(c) 30K groups. Group size follows WVE distri-
bution in each tenant. A tenant’s VMs are dis-
tributed randomly. Apply local aggregation at the
aggr layer.

Figure 5: Simulation results of the no. of multicast entries in switches and link rates. C stands for core switch, A for aggr switch, E for edge
switch, H for host, (la) for local aggregation, (m) for entries with multiple forwarding ports. Whiskers represent the min and max value; boxes
show the 25th, 50th (midline), and 75th percentiles; circles show the means.

the datacenter’s multicast address capacity is greatly affected by
group distributions, and it is proportional to the multicast address
capacity of a single switch (Eq. 4 and 5). We conduct our simulations
with different tenants and multicast group distributions.

The traffic rate of each group is randomly chosen from 1 to 10.
We evaluate the traffic rate overhead for local group aggregation
based on this setting. The rate unit is not specified since it does
not affect simulation results in these experiments. For most experi-
ments, we set each switch to have a multicast address capacity of
1000 entries, although we also evaluate scalability under different
capacities (Figure 6).

When a tenant’s VMs are placed on nearby hosts, local aggrega-
tion significantly increases group capacity. With this VM place-
ment policy, most multicast groups are spread over a very small
number of pods (max = 12, mean = 2.5 in our simulation). As a
result, the group capacity bottleneck should arise at the edge layer.

Figure 5a shows the simulation results for 100K multicast groups,
with group sizes for each tenant following the WVE distribution
(Fig. 4a). Each core and aggregation switch have less than 1000
multicast addresses. However, without local aggregation, more than
95% of edge switches have more than 1000 multicast addresses, and
the maximum number reaches 330% of the switch capacity, which
means the datacenter can support up to about 30K groups. If we
apply local aggregation to the edge switches, the multicast entries on
edge switches are reduced to 866 at maximum and 530 on average,
and thus can support 100K multicast groups. The traffic overhead
introduced by local aggregation is only about 0.2%.

Figure 5b shows the simulation results for 100K multicast groups,
with group sizes of each tenant following uniform distribution (Fig.
4b). The number of multicast addresses in core and aggregation
switches are about the same as the previous distribution, while the
edge switches have many more multicast addresses. Without local
aggregation, the maximum number of multicast entries in an edge
switch is 700% of the switch capacity, so the datacenter can only
support up to 15K multicast groups. By applying local aggregation
on the edge switches, however, the datacenter can support all 100K
multicast groups, which allows each end host to subscribe to 1850

different groups on average. Since the group sizes increase greatly,
the traffic overhead introduced by local aggregation now becomes
about 19.4% on average, and about 24.5% for 1% of the links with
the highest traffic rate. However, this overhead is still very small
compared to non-IP-multicast solutions (considering the average
group size is 510).

When a tenant’s VMs are distributed across the network ran-
domly, the use of unicast entries combined with local aggrega-
tion significantly increases group capacity. With this VM place-
ment policy, groups may spread over many pods (max = 48, mean =
16 in our simulation), but only to a small number of edge switches
within each pod (mean = 2.2). As a result, the group capacity
bottleneck should arise at the aggregation layer.

Random VM placement greatly reduces the multicast address
capacity of the whole system, since addresses are replicated at
more switches and more pods. Figure 5c shows the simulation
results for 30K groups, with group sizes of each tenant following the
WVE distribution. Each core and edge switch has fewer than 1000
multicast addresses, but each aggregation switch has more than 1000
multicast addresses. Applying local aggregation to the aggregation
layer reduces the number of entries in each aggregation switch to
fewer than 500. Because the maximum number of multicast entries
in edge switches is near to 1000, in this configuration, the datacenter
can support up to about 30K multicast groups, fewer than that shown
in Figures 5a and 5b.

With random VM placement, members of the same multicast
group have a low probability of being connected to the same edge
switch. As a result, most multicast entries in the edge switches only
have one forwarding port, which could be handled by a unicast entry.
In other words, an edge switch can reduce its multicast forwarding
table size by only allocating address entries with multiple forwarding
ports in the multicast forwarding table. Figure 5c (top) shows that
there are at most only 200 multicast address entries in each edge
switch that have multiple forwarding ports, shown in (m)E in the
figure. Therefore, with the same group distribution in this example,
the datacenter can support up to 150K groups by using about 4K
more unicast entries in each edge switch.



0 1000 2000 3000 4000 5000 6000
Multicast address capacity on a switch

0

50K

100K

150K

200K

250K

300K
Nu

m
be

r o
f g

ro
up

s
Near, U, la
Near, U
Rand, U, la
Rand, U

Near, WVE, la
Near, WVE
Rand, WVE, la
Rand, WVE

Figure 6: A datacenter’s maximum number of supported multicast
groups with different switch settings and group distributions. Near
and Rand stand for a tenant’s VMs are placed on nearby hosts or
randomly, WVE and U for group size follows WVE or uniform
distribution in each tenant, la for values after local aggregation. y
axis is cut at 300K. The two Near+la lines continue to near-linearly
increase as the switch address capacity increases to 6000.

A datacenter’s multicast group capacity is linearly related to
the switch’s multicast address capacity. We now vary switches’
address capacity and test the datacenter’s corresponding group ca-
pacity. To do so, we continuously generate multicast groups with
same distributions, until at least one switch reaches its capacity. Fig-
ure 6 shows the results. Generally, the number of supported groups
is higher when a tenant’s VMs are placed on hosts near to another,
because a same address would be replicated on fewer switches; and
when the group size follows the WVE distribution in each tenant,
because the average group size is much smaller (1/10th) than that of
uniform distribution.

We also simulate different replication factors (rc, ra) for multicast
address partitions. The results are fairly obvious: smaller replication
factors lead to more supported multicast groups. For example, when
a tenant’s VMs are placed on hosts near to another and the group
sizes follow the WVE distribution, by setting ra = 2 rather than 3 in
each pod, the datacenter can support about 50% more groups (e.g.,
150K when the single switch’s address capacity is 1000).

4.3 Group Membership Dynamics
In this section, we analyze and evaluate how frequently the

switches would update their multicast forwarding tables when (i)
a new group is created or a host joins an existing group, and (ii) a
group is removed or a host member leaves a group. Once a dynamic
event happens, the associated datacenter network controller will get
informed and then decide whether to install or remove rules in the
relevant switches.

Generally, a group member change will always trigger an edge
switch update, but will only trigger updates at higher layers if it
is the first join or last leave of this group at the lower layer. If a
multicast group has multiple join or leave events during a short
period of time, we can reduce the number of updates on switches
with batch operations. There are two types of batch operation effects:
first, collocated leaves and joins at about the same time may lead to
zero update on upper level switches; second, burst joins or leaves
only need one round of updates on related switches.

We next evaluate the benefit of batch operations, first using an
example to analyze the number of switch updates per dynamic event

0 200 400 600 800 1000
(N) Number of hosts that subscribe to the group

0
1
2
3
4
5
6
7
8
9

10

Nu
m

be
r o

f u
pd

at
es

 p
er

 e
ve

nt Next join when group size is N
Next leave when group size is N
N burst joins, w/o batch operation
N burst joins, with batch operation

Figure 7: Average number of switch updates per join or leave event,
for multicast groups in a tenant whose VMs spread over all 4608
end hosts in 8 pods.

Join Leave

number of events 500004 499996
average no. of edge updates per event 1 1
average no. of aggr updates per event 0.75 0.74
average no. of core updates per event 0.01 0.01
average no. of total updates per event 1.76 1.75

(a) A tenant’s VMs are placed on hosts near to one another.

Join Leave

number of events 149923 150077
average no. of edge updates per event 1 1
average no. of aggr updates per event 1.89 1.86
average no. of core updates per event 1.64 1.55
average no. of total updates per event 4.53 4.41

(b) A tenant’s VMs are distributed across the network randomly.

Table 2: Number of switch updates for dynamic events

within one group (§4.3.1), and then evaluate the group membership
dynamics for all multicast groups in the datacenter (§4.3.2).

4.3.1 Membership Dynamics within One Group
Suppose a tenant’s VMs are spread over all 192 edge switches

and 4608 end hosts in 8 pods. A multicast group G of the tenant
experiences three steps of group membership churn:

1. G is created, with no end host members.

2. N random hosts join G at about the same time.

3. End hosts randomly join or leave G.
We assume all the hosts who do not subscribe to G have equal

probability to join, and all the hosts who subscribe to G have equal
probability to leave. Figure 7 shows the average number of switch
updates for group G, across different sizes for G. For example, with
300 burst joins at the beginning, the average number of updates per
join is 2.78 without batching, yet only 0.62 with batching. With a
current group size is 300, the average number of switch updates for
the next join is 1.63, and the number for the next leave is 1.64.

4.3.2 Membership Dynamics of All Groups
For large scale evaluation, we simulate multicast membership

dynamics with the network and tenants settings specified in §4.1.



1.0 1.2 1.4 1.6 1.8 2.0
Average route stretch of a multicast group

10-6
10-5
10-4
10-3
10-2
10-1
100

CC
DF

200 failures
100 failures
50 failures
10 failures

0 20% 40% 60% 80% 100%
Unreachable hosts of a multicast group

10-4

10-3

10-2

10-1

100

CC
DF

200 failures
100 failures

(a) A tenant’s VMs are placed on hosts near to one another

1.0 1.2 1.4 1.6 1.8 2.0
Average route stretch of a multicast group

10-5

10-4

10-3

10-2

10-1

100

CC
DF

200 failures
100 failures
50 failures
10 failures

0 10% 20% 30% 40% 50%
Unreachable hosts of a multicast group

10-5

10-4

10-3

10-2

10-1

100

CC
DF

200 failures
100 failures

(b) A tenant’s VMs are distributed across the network randomly

Figure 8: Route stretch and percentage of unreachable hosts per group when using fast failover with local rerouting, when some random
aggregation switches among the 1152 aggregation switches in 48 pods of the network fail. All hosts are reachable when only a small number
of switches fail (e.g., 50 failures when each tenant’s VMs are near to one another). Group size follows WVE distribution in each tenant.

Group size follows the WVE distribution in each tenant. Join and
leave events are generated randomly for each group. The number of
events for a group is proportional to the group size. Table 2a shows
the results for 1 million join/leave events for 100K multicast groups
in the network where a tenant’s VMs are placed on hosts near to
one another. Table 2b shows the results for 300K join/leave events
for 30K multicast groups in the network where a tenant’s VMs are
distributed across the network randomly. The number of switch
updates are small on average, especially when a tenant’s VMs are
placed on hosts near to one another.

We can use this analysis to calculate the update load on switches.
Suppose each pod has 1000 dynamic events per second, then (in
the worse case with Table 2b) each edge switch has 42 updates per
second on average, each aggregation switch has 78 updates, and each
core switch has 133 updates. Given that (per §2.4), a commodity
network controller can handle more than a million requests per
second, and today’s OpenFlow switches can handle up to 1000
updates per second, these update rates can be easily handled even
without batching.

4.4 Fast Failover
If an edge switch fails, all hosts connected to it would lose their

connection to the network, and can do nothing but wait for their
switch to be fixed. If a core switch fails, aggregation switches can
just redirect upstream flows to other cores, without increasing the
routing stretch.

The fast failover protocols are most interesting when aggregation
switches fail. So, we simulate the network with random aggregation
switch failures and compute the route stretch and percentage of
unreachable hosts. Figure 8 shows our findings. Most multicast
groups have very low route stretch and high routing availability
with local rerouting, even if 5% of the switches fail. This indicates
that fast failover with local multicast rerouting can work well for
short-term network failures, and it can be used to provide additional
time for multicast tree reconstruction by the network controller.

5. CONCLUSION
Multicast is an important communication primitive in datacenter

networks. Providing multicast at the network layer achieves better
bandwidth and computational efficiency than emulating it within
applications or overlays. However, the use of IP multicast has been
traditionally curtailed due to scalability limitations.

This paper overcomes these traditional limits by leveraging the
structural properties of multi-rooted tree topologies and the capa-
bilities of a centralized network management platform emerging
in today’s datacenters. Our architecture can support large numbers
of multicast groups even given modest multicast forwarding tables,
and its mechanisms are robust to network failures. The system is
transparent to applications and deployable in today’s networks.

Acknowledgments. The authors are grateful to Jennifer Rexford
for her insightful feedback, as well as to Ymir Vigfusson for provid-
ing the IBM WVE traces and valuable suggestions. Matvey Arye,
Aaron Blankstein, Michael Chan, Xin Jin, Rob Kiefer, Wyatt Lloyd,
Ariel Rabkin, Peng Sun, the anonymous CoNEXT reviewers, and
our shepherd, Dejan Kostic, provided helpful comments. This work
was supported by funding from the National Science Foundation.

References
[1] Cisco’s Massively Scalable Data Center.
http://www.cisco.com/en/US/solutions/ns340/
ns414/ns742/ns743/ns994/landing_msdc.html.

[2] IETF Multicast Security Working Group (Concluded).
http://datatracker.ietf.org/wg/msec/.

[3] IETF Reliable Multicast Transport Working Group
(Concluded). http://datatracker.ietf.org/wg/rmt/.

[4] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and
A. Donnelly. Symbiotic Routing in Future Data Centers. In
SIGCOMM, 2010.

http://www.cisco.com/en/US/solutions/ns340/ns414/ns742/ns743/ns994/landing_msdc.html
http://www.cisco.com/en/US/solutions/ns340/ns414/ns742/ns743/ns994/landing_msdc.html
http://datatracker.ietf.org/wg/msec/
http://datatracker.ietf.org/wg/rmt/


[5] M. Adler, Z. Ge, J. F. Kurose, D. Towsley, and S. Zabele.
Channelization Problem in Large Scale Data Dissemination.
In ICNP, 2001.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In
SIGCOMM, 2008.

[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In NSDI, 2010.

[8] M. Balakrishnan, K. Birman, A. Phanishayee, and S. Pleisch.
Ricochet: Lateral Error Correction for Time-Critical
Multicast. In NSDI, 2007.

[9] Y. Cai, L. Wei, H. Ou, Y. Arya, and S. Jethwani. Protocol
Independent Multicast Equal-Cost Multipath (ECMP)
Redirect. RFC 6754, 2012.

[10] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and
A. Thyagarajan. Internet Group Management Protocol,
Version 3. RFC 3376, 2002.

[11] C. Diot, B. Neil, L. Bryan, H. Kassem, and D. Balensiefen.
Deployment issues for the IP multicast service and
architecture. IEEE Network, 14:78–88, 2000.

[12] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas.
Protocol Independent Multicast - Sparse Mode (PIM-SM):
Protocol Specification (Revised). RFC 4601, 2006.

[13] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang.
A Reliable Multicast Framework for Light-Weight Sessions
and Application Level Framing. Trans. Networking,
5(6):784–803, Dec. 1997.

[14] P. Gill, J. Navendu, and N. Nagappan. Understanding
Network Failures in Data Centers: Measurement, Analysis,
and Implications. In SIGCOMM, 2011.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandular, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network. In SIGCOMM,
2009.

[16] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: a High Performance,
Server-centric Network Architecture for Modular Data
Centers. In SIGCOMM, 2009.

[17] M. Handley, I. Kouvelas, T. Speakman, and L. Vicisano.
Bidirectional Protocol Independent Multicast (BIDIR-PIM).
RFC 5015, 2007.

[18] H. Holbrook and B. Cain. Source-Specific Multicast for IP.
RFC 4607, 2006.

[19] IBM WebSphere. www-01.ibm.com/software/
webservers/appserv/was/.

[20] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat. B4: Experience with a
Globally-Deployed Software Defined Wan. In SIGCOMM,
2013.

[21] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and
P. Nikander. LIPSIN: Line Speed Publish/Subscribe
Inter-Networking. In SIGCOMM, 2009.

[22] P. Judge and M. Ammar. Security Issues and Solutions in
Multicast Content Distribution: A Survey. IEEE Network,
17:30–36, 2003.

[23] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. In STOC, 1997.

[24] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutevski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A Distributed Control Platform for
Large-scale Production Networks. In OSDI, 2010.

[25] D. Li, Y. Li, J. Wu, S. Yu, and J. Yu. ESM: Efficient and
Scalable Data Center Multicast Routing. Trans. Networking,
20(3):944–955, 2012.

[26] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10:
A Fault-Tolerant Engineered Network. In NSDI, 2013.

[27] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger,
T. Sridhar, M. Bursell, and C. Wright. VXLAN: A Framework
for Overlaying Virtualized Layer 2 Networks over Layer 3
Networks. IETF Internet-Draft, May 2013.

[28] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia
Distributed Monitoring System: Design, Implementation, and
Experience. Parallel Computing, 30:817–840, 2004.

[29] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. PortLand:
A Scalable Fault-Tolerant Layer 2 Data Center Network
Fabric. In SIGCOMM, 2009.

[30] D. Newman. 10 Gig access switches: Not just packet-pushers
anymore. Network World, 25(12), Mar. 2008.

[31] Object Management Group. Data Distribution Service.
http://portals.omg.org/dds/.

[32] Open Networking Foundation. www.opennetworking.org.
[33] Oracle Coherence. http://coherence.oracle.com/

display/COH35UG/Network+Protocols.
[34] I. Pepelnjak. FIB update challenges in OpenFlow networks.

blog.ioshints.info/2012/01/
fib-update-challenges-in-openflow.html, Jan.
2012.

[35] S. Ratnasamy, A. Ermolinskiy, and S. Shenker. Revisiting IP
Multicast. In SIGCOMM, 2006.

[36] S. Sen, D. Shue, S. Ihm, and M. J. Freedman. Scalable,
Optimal Flow Routing in Datacenters via Local Link
Balancing. In CoNEXT, 2013.

[37] J.-Y. Shin, B. Wong, and E. G. Sirer. Small-World
Datacenters. In SOCC, 2011.

[38] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish:
Networking Data Centers Randomly. In NSDI, 2012.

[39] M. Sridharan, A. Greenberg, Y. Wang, P. Garg,
N. Venkataramiah, K. Duda, I. Ganga, G. Lin, M. Pearson,
P. Thaler, and C. Tumuluri. NVGRE: Network Virtualization
using Generic Routing Encapsulation. IETF Internet-Draft,
Aug. 2013.

[40] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky.
Hierarchial Clustering of Message Flows in a Multicast Data
Dissemination System. In IASTED PDCS, 2005.

[41] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood. On Controller Performance in
Software-Defined Networks. In HotICE, 2012.

[42] Y. Vigfusson. Personal communication, 2013.
[43] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman,

R. Burgess, G. Chockler, H. Li, and Y. Tock. Dr. Multicast:
Rx for Data Center Communication Scalability. In EuroSys,
2010.

[44] J. Widmer and M. Handley. Extending Equation-based
Congestion Control to Multicast Applications. In SIGCOMM,
2001.

www-01.ibm.com/software/webservers/appserv/was/
www-01.ibm.com/software/webservers/appserv/was/
http://portals.omg.org/dds/
www.opennetworking.org
http://coherence.oracle.com/display/COH35UG/Network+Protocols
http://coherence.oracle.com/display/COH35UG/Network+Protocols
blog.ioshints.info/2012/01/fib-update-challenges-in-openflow.html
blog.ioshints.info/2012/01/fib-update-challenges-in-openflow.html

	Introduction
	Towards Scalable Multicast
	Limitations of Today's IP Multicast
	Next-Generation Datacenter Architecture
	Scale-Out IP Multicast in Datacenters
	Managing Multicast using SDN
	Related Work

	System Design
	Multicast Address Distribution
	Calculating the Multicast Group Capacity
	Distributing the Multicast Address

	Scaling Address Aggregation in Pods
	Apply Local Address Aggregation
	The Multicast Group Aggregation Algorithm

	Recovering Quickly from Failures
	Using Local Rerouting for Fast Failover
	Reconstructing the Multicast Tree


	Evaluation
	Experimental Setup
	Multicast Address Capacity
	Group Membership Dynamics
	Membership Dynamics within One Group
	Membership Dynamics of All Groups

	Fast Failover

	Conclusion

