
Serverless Isn’t Server-Less:
Measuring and Exploiting Resource Variability on Cloud

FaaS Platforms
Samuel Ginzburg and Michael J. Freedman

Princeton University

Abstract
Serverless computing in the cloud, or functions as a service
(FaaS), poses new and unique systems design challenges.
Serverless offers improved programmability for customers,
yet at the cost of increased design complexity for cloud
providers. One such challenge is effective and consistent re-
source management for serverless platforms, the implications
of which we explore in this paper.

In this paper, we conduct one of the first detailed in situ
measurement studies of performance variability in AWS Lamb-
da. We show that the observed variations in performance are
not only significant, but stable enough to exploit.

We then design and evaluate an end-to-end system that
takes advantage of this resource variability to exploit the
FaaS consumption-based pricing model, in which functions
are charged based on their fine-grain execution time rather
than actual low-level resource consumption. By using both
light-weight resource probing and function execution times to
identify attractive servers in serverless platforms, customers
of FaaS services can cause their functions to execute on better
performing servers and realize a cost savings of up to 13% in
the same AWS region.
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1 Introduction
Functions as a service (FaaS) is the newest cloud computing
paradigm, promising to abstract away the significant complex-
ity of modern software architectures. Unlike deploying virtual
machines or containers, developers who use FaaS products
such as AWS Lambda only have to write small callbacks
without worrying about fault tolerance, resource allocation,
scheduling, concurrency, OS abstractions, infrastructure, and
often state management.

Serverless platforms offer a fine-grained consumption-based
billing model that bills customers only for the execution time
of applications. Alternative cloud computing platforms such
as Amazon EC2 bill customers using an allocation-based
billing model. Allocation-based pricing schemes charge cus-
tomers for the provisioned resources, as opposed to the mag-
nitude of the workloads that the customers run using the
provisioned resources. In contrast, AWS Lambda employs
a consumption-based billing model [1]. Consumption-based
pricing charges customers for the resources used during the
execution of their workloads. Functions created on AWS
Lambda still consume resources when not in use, but cus-
tomers are only charged for the duration of the invoked func-
tions rounded up to the nearest 100 millisecond increment.

This paper explores the key observation that, subtly counter
to the notion of consumption-based pricing, users are not
actually charged for the precise fine-grained resources they
consume (e.g., CPU cycles), but rather just some narrow
duration of time during which they execute. We show that
not all time slices in serverless environments are equal as a
result of performance variation, and that users can (and are
incentivized to) exploit these differences for gain.

The challenge of exploiting performance variation emerges
from the difference between allocation-based and consumption-
based pricing. Under the latter model, because users are not
charged for allocation, cloud providers cannot hard allocate
resources to their customers. In addition, cloud providers can-
not ensure minimal resource limits at allocation time when
supporting resource bursting for work-conserving allocation.
Rather, because functions are only billed when they execute
and yet their execution can be stochastic, cloud providers are
incentivized to over-subscribe functions to servers, in order to
maximize the resource utilization of their physical machines.

https://doi.org/10.1145/3429880.3430099
https://doi.org/10.1145/3429880.3430099


As more functions are scheduled onto the same physical ma-
chine, server utilization goes up, but so does the probability
of resource contention.

Further, the unpredictable nature of invocation patterns
in serverless environments implies that resource utilization
and contention will differ across physical machines. As a
result of increased resource contention, noisy neighbors in
serverless environments also have the potential for increased
impact on the performance of co-tenant functions. Both of
these implications have significant impacts on the potential for
significant performance isolation issues in public serverless
environments.

Towards this end, this paper explores two main questions.
First, to what extent do performance variances exist across

functions on AWS Lambda, and can they be exploited?
Second, can we build an end-to-end system, compatible

with today’s serverless environments without any platform
modifications, that can optimize where to execute user func-
tions to achieve de facto lower costs? We call this the place-
ment gaming problem for serverless environments.

We explore these questions by conducting a measurement
study examining the performance variation of applications
in AWS Lambda. We conducted two experiments: one large
scale evaluation taking place over the course of a week, and
a second smaller evaluation within a duration of 48 hours.
We observe that there is temporal, spatial, and instantaneous
performance variation within serverless environments. In par-
ticular, we observe that there is significant variation in per-
formance for some compute-bound workloads, and that the
performance of these functions is also stable enough to per-
form placement gaming.

Leveraging these insights, we explore the possibility of
placement gaming—an optimization process by which users
can reduce the end-to-end cost of running workloads by
searching for better performing compute resources. We find
that there exist workloads for which placement gaming results
in consistent reductions in end-to-end costs of around 10%.

2 Measurements
Performance isolation problems in production cloud envi-
ronments can be difficult to diagnose properly. The possible
causes of performance isolation problems in multi-tenant
cloud environments range from noisy neighbors to hetero-
geneous hardware setups. There are some past works that
have observed some performance variation [6, 8], but nei-
ther work examined the magnitude or pattern of the observed
performance variation.

In this study, we examine both the performance variability
and performance stability of a set of benchmarks designed to
measure a variety of shared resources. We specifically look
for three types of performance variability: instantaneous, tem-
poral, and spatial. We found all three types of performance

Benchmark Name Measured Resources

Cache Benchmark (cache) CPU, CPU Cache
FFmpeg Encoding (video) CPU, CPU Cache, Disk IO

S3 File Download (net) Network IO
N-Queens (nqueens) CPU

Table 1. Benchmarks and Measured Resources

variability in AWS Lambda, and also showed that some work-
loads are amenable to placement gaming.

2.1 Benchmarks
For our benchmarks, we selected a set of test functions, de-
signed to approximate workloads that disproportionately use
each measured resource. The benchmarks listed in Table 1
are designed to measure resources where performance iso-
lation has historically been an issue in previous work, such
as the CPU cache, CPU (processor frequency and processor
pipeline), disk IO, and network IO [2–4, 7].

Cache Benchmark. This benchmark loops over the last
level cache twice, writing a set of values and timing how long
it takes to read them back after a short interval. It is designed
to be representative of cache-heavy workloads.

Video Benchmark. The second benchmark is the ffmpeg
video encoding benchmark, which takes in a short video in
MP4 format from disk, loads it into memory, and re-encodes
the same video file. Video encoding makes heavy use of the
CPU and CPU cache in addition to performing some disk IO
to read the file into memory.

N-Queens Benchmark. The nqueens problem is a chess
problem where the goal is to place N queens on a chess board
such that they cannot attack each other. The problem is clas-
sically formulated as a backtracking search problem, whose
performance primarily varies with the CPU [3]. This bench-
mark stresses out the CPU without making heavy use of the
CPU cache. For the implementation, we used the implemen-
tation found internally within the LLVM compiler [5].

Net Benchmark. The S3 file download (net) benchmark
is designed to test network performance variance in AWS
Lambda. The benchmark consists of a file download from
Amazon S3, a persistent object store. We use a 40MB geo-
replicated file to ensure locality within AWS regions. Ad-
ditionally, we control for caching effects in Amazon S3 to
ensure that we are only measuring local network performance.

2.2 Performance Variance
We explored performance variability across three dimensions
for the purpose of conducting placement gaming: temporal,
spatial, and instantaneous.

To measure performance variance, we designed two exper-
iments for each of our four benchmarks: first within the same
AWS region, and second across separate AWS regions. Our
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Figure 1. End-to-End Performance. The execution time of each benchmark is relative to the week average end-to-end execution
time. Diurnal patterns can be seen in the cache and video benchmarks, both of which use the CPU cache heavily.

first intra-regional experiment investigates the viability of per-
forming instantaneous placement gaming as well as temporal
placement gaming, while our inter-region experiment investi-
gates the viability of performing spatial placement gaming.

2.2.1 Intra-Region Performance Variance. We first ex-
amine the performance variation that can occur in cloud plat-
forms as a result of workload size varying over the course
of a day. These workload patterns are also known as diurnal
patterns, and are primarily caused by an increase in noisy
neighbors correlating with when application workloads in-
crease in size. We also explore the existence of instantaneous
performance variation by computing the coefficient of vari-
ation for each benchmark. Both instantaneous and diurnal
performance variation were observed in our measurements.

Methodology. To observe diurnal patterns in serverless
workloads, we allocated 50 functions in the us-east-1
AWS region (Virginia) with 2048MB of memory for each
benchmark in Table 1, with each of the 50 functions contain-
ing identical code. We know from prior work [8] that it is
possible for AWS Lambda functions to end up co-located to
each other; however, by allocating 50 function placements for
each benchmark, we help ensure that a sufficient portion of
them will represent unique function placements. In addition to
measuring sufficiently many unique function placements, we
also ensure that each subsequent request to a placed function
is executed on the same physical machine (specifically, by
validating that the performance statistics reported by procfs
are monotonically increasing). Each function was executed
five times sequentially, for a total of 1000 total function exe-
cutions every two hours over the course of a week.

Diurnal Patterns. Figure 1 shows strong diurnal patterns
for the cache and video benchmarks for all percentiles, while
not showing any pattern for the net and nqueens benchmarks.
The net benchmark does displays diurnal patterns, however

Benchmark Name Coefficient of Variation

Cache Benchmark (cache) 5.35
FFmpeg Encoding (video) 2.12

S3 File Download (net) 14.79
N-Queens (nqueens) 1.629

Table 2. Instantaneous Coefficients of Variation

these patterns can not be seen in the figure, as they are signif-
icantly smaller (1-2% in magnitude) and only visible when
examining the average execution time.

We also observed the magnitude of outlier results (which
tended to occur at peak load), finding that significant shifts in
performance occur throughout the week occurred for them.
The speedup from the worst to best performing function invo-
cations over the course of a week was 29% for the nqueens
benchmark, 80% for the cache benchmark, and 75% for the
video benchmark. For the net benchmark, the speed between
the worst and best performing invocations was 136%.

Instantaneous Performance Variation. We used the coef-
ficient of variation to measure the instantaneous end-to-end
performance variation for each benchmark over a one week
period. We found that each of the CPU-bound benchmarks
maintained a similar coefficient of variation, with values aver-
aging between 1-6% for the CPU-bound benchmarks, similar
to past work done on placement gaming for EC2 [3]. How-
ever, in Table 2 above, we can see that the net benchmark
displayed significantly larger instantaneous variation in end-
to-end performance than the CPU-bound benchmarks.

In order to take advantage of instantaneous placement
gaming, we also examined the performance stability of each
benchmark. Performance stability is necessary to achieve any
benefit from placement gaming, as changing performance
conditions can make placement gaming untenable.
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Figure 2. Percentage of Stolen CPU Ticks Over 1 Week. We see a visible diurnal pattern in the amount of stolen CPU cycles for
each benchmark during the week. The net and video benchmarks report significantly higher fractions of their CPU time as stolen
when compared to the other two benchmarks.

We defined performance stability as the correlation be-
tween past and future end-to-end execution time, and deter-
mined the correlation between the first and subsequent four
invocations of each of our benchmarks. The R2 between the
first and following four function invocations was between
0.8 and 1 for the CPU-bound benchmarks, and 0 for the net
benchmark, indicating that CPU-bound workloads have high
performance stability, while network-bound workloads dis-
play low performance stability. The disparity in performance
stability likely comes from the resource sharing mechanisms
used. Network contention results in jitter, which is random.
Contention for the CPU results in the flushing of microarchi-
tectural state, which is a function of neighboring functions as
opposed to being random.

Implications. The results above suggest that temporal place-
ment gaming is not only viable for some workloads, but can
result in significant cost reductions for customers who can
time-shift their workloads. The existence of instantaneous
performance variation as well as performance stability for
CPU-bound workloads demonstrates the viability of place-
ment gaming for non network-bound workloads.

2.2.2 Inter-Region Performance Variance. In Section 2.2.1
we observed significant diurnal patterns in our benchmarks.
Based on these results, we then designed a second experi-
ment to investigate disjoint diurnal patterns, which are sets
of two diurnal patterns where the daily shifts in performance
do not overlap. The existence of these patterns can be used to
determine the viability of spatial placement gaming.

Methodology. For the inter-regional measurements, we in-
voked a single function instance of the cache and net bench-
marks over the course of 48 hours across two geographically
distant regions: ap-northeast-2 (Seoul, South Korea)
and the us-east-1 (Virginia).

Disjoint Diurnal Patterns. Similarly to our intra-region
measurements in Section 2.2.1, we were able to see a clear
diurnal pattern in the cache benchmark for Virginia, with a
comparatively weaker diurnal pattern for Seoul. We observed
an average 11% difference in end-to-end performance be-
tween the two regions for the cache benchmark, with peaks in
performance occurring approximately 12 hours apart. Further,
we also observed that Virginia displayed consistently better
performance for the net-benchmark.

Implications. The observed differences in function per-
formance across timezones show that it is possible to per-
form spatial placement gaming for serverless functions in
AWS Lambda. To perform such placement gaming, customers
should simply run their workload in a region that is currently
in a period of local inactivity.

3 Exploiting Performance Variation
In Section 2.2, we found that serverless applications run-
ning in AWS Lambda display significant performance vari-
ation, and that non network-bound workloads demonstrate
predictable performance in the short term.

As a proof of concept, we have designed an end-to-end
system to exploit performance variation in AWS Lambda.
Temporal, spatial, and instantaneous performance variation
all showed potential as avenues for performing placement
gaming. While performing temporal and spatial is straightfor-
ward and can attain meaningful performance improvements
(namely, 80% and 11% respectively), these two approaches
introduce significant downsides as well: inter-region data
transfer costs and time-sensitive workloads are both factors
to be considered when applying these techniques to real ap-
plications. Instead we focus on the challenges of performing
instantaneous placement gaming, which is the most applicable
form of placement gaming for a majority of workloads.
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Figure 3. Placement Gaming Benchmark Results. Our placement gaming results show that the up-front strategy was only able to
reduce costs significantly for a single benchmark, while the opportunistic replacement strategy was able to reduce end-to-end
cost for all three of our benchmarks. The box plot for each strategy shows the 25th , 50th , and 75th percentiles of the data, with
the whiskers representing the minimum and maximum reduction in cost.

To conduct instantaneous placement gaming, we explore
two strategies: up-front replacement and opportunistic re-
placement. We base these strategies on prior work in place-
ment gaming for virtual machines [3], and show that they can
be effective in serverless environments as well.

Up-Front Replacement. Up-front replacement is a straight-
forward technique: a large set of N functions are allocated
up front and invoked a single time to determine the perfor-
mance of each placed function. The resulting workload is then
executed on the top performing placements until completion.

We implemented two variants of up-front replacement: a
black-box technique that uses function execution time as a
proxy for performance, and a grey-box technique that utilizes
insights gained from our measurement study. The grey-box
variant uses CPU steal time to approximate server load, which
is accurate when machines are oversubscribed. We show in
Figure 2 that, similarly to end-to-end execution time, CPU
steal time follows a diurnal pattern, showing that there is a
correlation between server load and function performance
(with a corresponding R2 of 0.4 to 0.6, varying diurnally—
plot omitted due to space constraints). Using this metric we
construct a light-weight probing technique that allows us to
sample function placements without paying for the full execu-
tion time of each benchmark, which also has the added benefit
of being accurate independent of inputs to the function.

Opportunistic Replacement. Unlike up-front replacement,
opportunistic replacement takes a more dynamic approach
by continuously searching for and replacing functions with
subpar performance. The key parameter in opportunistic re-
placement is the threshold for function replacement, which
is the performance cutoff at which a function placement is
discarded and a new one allocated. We track the end-to-end
performance of all prior function invocations, and replace

functions using a percentile cutoff. Replacing functions that
drift in performance results in a strategy that is significantly
less sensitive to variations in performance over time, making
it a better strategy for longer running workloads.

4 System Evaluation
To evaluate our proposed end-to-end system, we decided to
target a subset of serverless workloads that are amenable
to placement gaming. We found that batch workloads with-
out low-latency requirements worked best, since function
placement search costs can increase function latency. In addi-
tion, our previous measurements suggest that network-bound
workloads are a poor target for placement gaming. Function
chaining (calls to serverless functions from inside a server-
less function) can also complicate placement gaming, since
chained functions can have multiple function placements.

With this in mind, we chose to examine three functions:
the video benchmark, nqueens benchmark, and a new “img”
benchmark, which resizes and blurs a JPG image file. The
img and video benchmarks are similar in terms of resource
usage, but differ in end-to-end execution time, which can
affect placement gaming results. The nqueens benchmark
showed little variation in our measurements, and in turn is a
useful lower-bound in terms of what results we can obtain
from placement gaming. All three benchmarks were written
in C or Rust to avoid significant runtime overhead.

To evaluate our placement gaming algorithms, we compare
our results to a control: a single 2048MB function is allocated,
on which we sequentially invoke our workload. Following
this, we then sequentially execute the same workload using
our selected placement gaming strategy. We use a fixed-size
workload of 100 total function invocations. The difference in
cost between the control and our placement algorithm is then
computed. We then repeat this process 10 times, for a total
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of 1000 function invocations across three benchmarks. The
10 samples are evenly spread out over the course of a day to
account for the possible effects of diurnal patterns.

Overall, for the benchmarks that we evaluated, we found
that opportunistic replacement performed slightly better. With
opportunistic replacement we were able to reduce costs by
between 2% and 8% on average, while up-front replacement
was only able to improve costs for the img benchmark. Up-
front replacement had the largest reduction in costs overall
for the img benchmark, with an average reduction in costs
of about 13.5%. We find that strategy choice is dependent on
both function resource usage and end-to-end execution time.

Up-Front Strategy Evaluation. In our up-front strategy,
we found that both our black-box and grey-box strategies
were mostly ineffective. We can see from Figure 3 that the
naive black-box strategy performed poorly on all benchmarks,
with an average reduction in costs of just slightly above 0%.
In contrast, the grey-box variant attained the largest reduction
in end-to-end costs of both strategies.

The resources that each benchmark used played a signifi-
cant role in the efficiency of both placement gaming strategies.
The most notable discrepancy was the difference between the
video and img benchmarks, which use both the CPU and
the CPU cache. The img benchmark was both shorter, and
also displayed a larger gap in performance (of around 25%)
between the best and worst performing invocations.

Opportunistic Strategy Evaluation. When using an exper-
imentally derived percentile cutoff of 60%, we were able to
obtain a consistent decrease in costs for all benchmarks. Sim-
ilarly to the grey-box up-front strategy, the img benchmark
had the largest reduction in cost, but the opportunistic strategy
was able to do better for the longer running benchmarks. This
is because opportunistic replacement constantly searches for
new placements, dealing with changes in the performance of
function placements better.

Implications of Instantaneous Placement Gaming. The
placement gaming strategies that we developed both require
over-allocating functions in order to search for an optimal
function placement. There is an inherent trade-off here. Ex-
ploiting AWS Lambda’s billing model enables us to search
for optimal function placements with a minimal cost; how-
ever, this results in lower resource utilization and in turn an
increased amount of cold starts (increased function startup
time) for serverless providers if sufficiently many customers
employ placement gaming strategies.

5 Conclusion
AWS Lambda and other FaaS providers have exploded in pop-
ularity in recent years, due to their simplified programming
and pricing models.

At the core of these platforms, however, is a complex re-
source allocation problem. Figuring out how to maximize

server utilization is important to such platforms. However, the
balance between server utilization and strong performance
isolation is also important, since the impacts of weak per-
formance isolation are explicitly visible to customers—as
opposed to server utilization. In this paper, we show that
the lack of performance isolation between tenants in AWS
Lambda enables customers to exploit the system.

We investigated a number of performance characteristics of
a production serverless platform. For compute-bound work-
loads, we demonstrated significant spatial, temporal, and
instantaneous performance variation. We then investigated
the performance stability of each benchmark, and found that
non-network resources demonstrated significant performance
stability. We further briefly explored the underlying cause of
performance variation in AWS Lambda, and found a strong
diurnal pattern in CPU steal time that correlated with end-to-
end function performance.

We further investigated a client strategy to improve the
performance of their use of AWS Lambda, by performing
placement gaming on the platform. We demonstrated two
effective strategies that do not require in-depth knowledge
of the functions being executed. Using these strategies, we
were able to obtain a decrease in end-to-end costs by up
to 13% for selected workloads, matching placement gaming
results on other platforms. Following this, we briefly speculate
about the possible impacts of placement gaming on resource
utilization. The problem of balancing strong performance
isolation with the maximization of resource utilization in
serverless platforms remains an important open problem.
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