
Palette Load Balancing: Locality Hints for Serverless
Functions

Mania Abdi∗
Northeastern University

Samuel Ginzburg∗
Princeton University

Charles Lin∗
Anyscale Inc.

José M Faleiro∗
Unaffiliated

Íñigo Goiri
Azure Systems Research

Gohar Chaudhry
Azure Systems Research

Ricardo Bianchini
Azure Systems Research

Daniel S. Berger
Azure Systems Research

Rodrigo Fonseca
Azure Systems Research

Abstract
Function-as-a-Service (FaaS) serverless computing enables
a simple programming model with almost unbounded elas-
ticity. Unfortunately, current FaaS platforms achieve this
flexibility at the cost of lower performance for data-intensive
applications compared to a serverful deployment. The ability
to have computation close to data is a key missing feature.
We introduce Palette load balancing, which offers FaaS ap-
plications a simple mechanism to express locality to the plat-
form, through hints we term “colors”. Palette maintains the
serverless nature of the service – users are still not allocating
resources – while allowing the platform to place successive
invocations related to each other on the same executing node.
We compare a prototype of the Palette load balancer to a
state-of-the-art locality-oblivious load balancer on represen-
tative examples of three applications. For a serverless web
application with a local cache, Palette improves the hit ratio
by 6x. For a serverless version of Dask, Palette improves run
times by 46% and 40% on Task Bench and TPC-H, respec-
tively. On a serverless version of NumS, Palette improves
run times by 37%. These improvements largely bridge the
gap to serverful implementation of the same systems.

CCS Concepts: • Computer systems organization →
Cloud computing.

Keywords: CloudComputing, Serverless Computing, Caching,
Data-parallel processing

∗Work conducted while at Microsoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’23, May 9–12, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9487-1/23/05. . . $15.00
https://doi.org/10.1145/3552326.3567496

ACM Reference Format:
Mania Abdi, Samuel Ginzburg, Charles Lin, José M Faleiro, Íñigo
Goiri, Gohar Chaudhry, Ricardo Bianchini, Daniel S. Berger, and Ro-
drigo Fonseca. 2023. Palette Load Balancing: Locality Hints for
Serverless Functions. In Eighteenth European Conference on Com-
puter Systems (EuroSys ’23), May 9–12, 2023, Rome, Italy. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3552326.3567496

1 Introduction
Minimizing data movement is key to the performance of
distributed datacenter applications. Common applications
like web API frontends and data analytics achieve this by ex-
ploiting and enforcing locality. For example, frontend servers
often use a local cache and route requests from the same user
to the same server to maximize cache effectiveness. Similarly,
data analytics relies on tasks where one step outputs data
that is consumed by subsequent tasks, and a scheduler places
tasks so that network transfers of this data is minimized.
Recent research has shown the benefits of running dis-

tributed applications on Functions-as-a-Service (FaaS) server-
less platforms (e.g., [16, 20, 33–35, 47, 58, 73, 78]). FaaS offers
ease-of-management and elasticity, while charging users
only for consumed resources at fine-grained timescales. This
gives the provider a lot of freedom to schedule, scale, and
load-balance function instances. While there are many com-
mercial [4, 6, 15, 21, 43, 64] and open-source [32, 48, 50, 61, 62,
81] FaaS offerings, existing platforms do not offer the same
sense of locality that is available to serverful distributed ap-
plications. For example, no existing FaaS platform enables
subsequent requests by the same user to be routed to the
same function instance. Similarly, running data analytics
on FaaS does not allow scheduling subsequent tasks that
consume each other’s outputs on the same instance. This
limitation persists despite the basic ability of current FaaS
platforms to keep state between invocations and existing ef-
forts to explicitly add local caches to FaaS platforms [59, 70].
Because there is no generic or reliable way for one invo-

cation to refer to state produced by a previous invocation,
today’s FaaS offerings are effectively ‘data shipping’ plat-
forms [42, 52]. For example, caches at a web frontend imple-
mented on FaaS would be ineffective as a given instance sees

https://doi.org/10.1145/3552326.3567496
https://doi.org/10.1145/3552326.3567496

EuroSys ’23, May 9–12, 2023, Rome, Italy Abdi et al.

essentially a random stream of users with few opportunities
for cache hits. Similarly, data analytics tasks would need to
transfer almost all outputs over the network.

Some approaches to address this problem include (1) adding
faster – but still remote – key-value stores, such as Pocket [52],
Jiffy [51], REDIS [68], Wukong [20], or R2E2 [33]; (2) using a
serverful orchestrator to manage long serverless invocations
as short-lived containers [34, 35, 86]; or (3) outright extend-
ing the interface to include workflows or DAGs [7, 10, 67, 78].
However, none of these approaches adds a generic sense of
locality to a platform. This lack of locality has been noted
as a major limitation in recent work [39, 42, 52, 71].

Our work. This paper explores a novel point in the design
space by embedding locality as a first-order concern within
the FaaS platform. We present Palette load balancing, which
is a minimalist (and thus practical) extension to FaaS plat-
forms. Palette exploits the fact that, in practice, virtually all
FaaS platforms reuse instances of the same function to avoid
“cold starts” [72, 83], and that there is state that outlives an
invocation such as global variables and local files [8, 14, 45].

Palette extends the FaaS abstraction with optional locality
hints to function invocations. These hints, which we refer to
as colors, are simply an extra opaque parameter to a function
invocation, and enable invocations to express affinity to both
previous invocations, and to data produced by them.

The color abstraction maintains FaaS’s simplicity: users
(optionally) express which invocations would benefit from
running in the same instance, without ever directly referring
to, allocating, or managing instances. In effect, an application
tells the platform: ‘try to run this invocation in the same
instance that you ran this other previous invocation’, without
having to specify the exact instance.

Interpreting colors as hints also preserves the benefits of
FaaS for the provider. The provider can leverage colors to
select the instance to send a request to. At the same time,
because colors are hints, ignoring them does not affect ap-
plication correctness. This preserves the provider’s freedom
to make allocation, scheduling, and scaling decisions.
To quantify the impact of locality hints on performance

and efficiency, we implement the Palette load balancer and
evaluate it with the open-source version of the Azure Func-
tions Host runtime [11]. Specifically, we evaluate three rep-
resentative examples from two broad classes of applications:
web API frontends and serverless DAG processing.

We find that Palette recovers the performance lost in ex-
isting FaaS platforms. For web API frontends that use a local
cache [17], Palette improves hit ratios by 6× compared to
locality-oblivious FaaS load balancing. For DAG processing,
we compare Palette to a state-of-the-art ‘locality-oblivious’
FaaS load balancer which frequently fetches data over the
network. Palette reduces run times by 46% and 40% on Task
Bench and TPC-H, respectively, implemented on Dask [22].
For NumS [29], we show Palette reduces run times by 37%

Scale
Controller

Serverless
Platform

Invocations

Worker

Worker

Worker

...Lo
ad

B
al

an
ce

r

User
Applications

Figure 1. Main components of a FaaS platform.

on average compared to a locality-oblivious FaaS platform.
Further, Palette’s flexibility to choose a coloring policy can re-
duce run time by 2.6x in some cases. We also compare Palette
to serverful implementations. Palette closes the performance
gap to Dask and to NumS running on Ray [67].
Contributions. In summary, our main contributions are:
• The Palette abstraction, a simple extension to current FaaS
APIs that allows users to express an application’s locality
and affinity properties.
• An implementation of Palette in a load balancer than en-
ables an end-to-end performance evaluation.
• Implementations on Palette of three applications with two
coloring policies, showing its generality and flexibility.
• Extensive evaluation of Palette’s design and the perfor-
mance and efficiency of locality hints.

2 Background and Motivation
This paper proposes an extension to the current API of server-
less FaaS offerings. Thus, we start by discussing current char-
acteristics and challenges of FaaS.
FaaS Architecture. The basic FaaS programming model
comprises event-driven, independent invocations of stateless
functions. A developer registers a function with the platform,
together with parameters such as triggering events and data
bindings [6, 13]. As in Azure Functions, we assume functions
are grouped into applications, which are the unit of resource
allocation. Functions from an application are loaded together,
share instances, and, optionally, data that remains on an
instance after an invocation.
Figure 1 shows the main components of a prototypical

serverless FaaS system: a frontend, and multiple workers
that run application instances in containers or VMs. In this
paper we assume there is a one-to-one correspondence be-
tween an application instance and a worker, and we may
use the terms interchangeably. The frontend comprises a
load balancer that routes function invocation requests to the
instance(s), and a scale controller that decides independently
per application whether to add or remove workers (even
down to 0), depending on that application’s load.
A key goal of FaaS is simplicity: there are almost no con-

figuration knobs. AWS Lambda, for example, only asks for
the desired amount of memory (which also implies the num-
ber of cores) [6], and Azure Functions has no required set-
tings [11]. A second goal is generality: there is no prescribed

Palette Load Balancing: Locality Hints for Serverless Functions EuroSys ’23, May 9–12, 2023, Rome, Italy

application structure, and users can bring their own code in
multiple languages. Use cases span, for example, API services,
event processing pipelines, ETL, software testing and mon-
itoring [28], video processing [35], data analytics [58, 73],
gaming [25], and machine learning [46].
Instance Reuse. Virtually all serverless platforms keep
instances around after an invocation [72, 76, 83]. This amor-
tizes the initialization cost and avoids cold starts. Applica-
tions may exploit this instance reuse to store data as a simple
cache [8, 12] (e.g., in global variables, or in the local file sys-
tem). This is useful for read-only data that is expensive to
retrieve or compute. Recent works [59, 70] take this further
and build proper distributed caches among instances of a
function, and even exploit lingering function instances as a
cheap in-memory cache for external usage [82].
FaaS Networking. Network bandwidth on current FaaS
platforms is a scarce resource. FaaS providers seek to max-
imize the number of functions running on a single host.
For example, with thousands of function micro-VMs on a
single node [2], AWS implements strict per-function limits
on packet rate and bandwidth. Functions also cannot use
kernel or hypervisor bypass functionality, leading to high
communication latencies.Further, functions are not directly
addressable, which forces them to communicate through
non-local storage services.
The result is that most external and cross-function inter-

actions happen across network hops, and these are much
more expensive than local data access. The authors of Cloud-
burst [78], for example, report latencies between 2× and 9×
lower (depending on the size) for summing 10 arrays from
local caches, compared to when reading from an in-memory
remote KVS ([78], Figure 5). Similarly, the authors of the
Faa$T cache [70] report end-to-end latencies between 1.3×
and almost 5× lower for three benchmarks, when reading
data from the local cache, compared to reading across the
network from remote caches [70].
Lack of locality. Despite the expensive non-local data ac-
cesses, current serverless systems have no way of preserving
locality across executions. This is noted in several previous
works as a major limitation [39, 42, 52].

Prior work attempts to overcome the missing locality in
three main ways: with fast remote storage [20, 51, 52], by
specializing the system (e.g., making a DAG a first-class con-
cept [10, 67, 78]), or by using functions as (short-lived) con-
tainers (e.g., gg long-lived mode [34], numpywren [73], or
Kappa [86]). Unfortunately, these approaches are either inef-
ficient, or give up some of the key benefits of the FaaS para-
digm. First, fast external storage can be significantly slower
than local accesses, requires work to deploy and maintain,
and can get expensive [70]. Second, by specializing the sys-
tem to execute only DAGs loses generality, and still can’t
offer locality to non-DAG applications, such as API services
where unrelated requests may access the same objects. Third,

using functions as containers greatly increases complexity. A
(serverful) coordinator invokes function instances that serve
as workers, manages the lifetime of these functions, and
repeatedly schedules tasks onto these instances. With this
approach, not only do we lose the the ease of deployment,
but also the cost advantage of paying only for execution time,
which are two key reasons for the popularity of FaaS.

3 Use Cases
Before we describe our approach to making locality a first-
class concept in FaaS, we focus on two broad classes of ap-
plications that can greatly benefit from expressing locality
when implemented on a serverless environment.
Locality use case 1: Web applications and APIs. Provid-
ing business logic behind APIs for web and mobile applica-
tions is a very appealing use case of FaaS. A recent survey
found APIs to comprise 28% of serverless use cases [28].
A common pattern for web services and APIs is to do

extensive caching in frontend servers [5, 18, 23, 40, 55, 60].
When implemented in FaaS, one function instance can serve
multiple successive requests and can cache data in between
invocations. By caching connection state, database query
results, social graph nodes and edges, and other data, the
system responds faster and the backend systems see signif-
icantly less load. In addition, the ability to cache state in a
function instance additionally reduces cost as cloud backends
typically charge per query.
To make caches within a function instance effective, we

need the ability to route requests that refer to similar objects
to the same instance. Naïve policies such as session sticki-
ness may help, but are not sufficient. For example, consider
a social networking service that is currently running 100
function instances in parallel. Suppose a user sends two re-
quests to render their social feed, first from their phone, and
then from their laptop. Without support for locality, the two
requests are routed randomly, with a 1% chance of being
executed in the same instance. This leads to low cache hit
rates. If the two requests were routed to the same instance,
the cache would be highly effective. In this particular case,
selecting instances by user name would solve the problem.
What is needed is a generic way of expressing this, that
works with the arbitrary, user-defined functions of a FaaS
environment.
At scale, locality in FaaS would enable partitioning or

sharding users and objects as used by large-scale caching
systems [5, 18, 23, 40, 55, 60]. Partitioning can significantly
increase cache efficiency, which translates to lower cost (us-
ing less memory) and lower latency (enabling higher hit
rates).
Locality use case 2: Distributed data processing. Data
analytics typically involves multiple processing stages with
data dependencies. There have been many recent proposals
of running distributed analytics on serverless [20, 34, 47, 58,

EuroSys ’23, May 9–12, 2023, Rome, Italy Abdi et al.

67, 73, 78]. These computations can be expressed as Directed
Acyclic Graphs (DAG) of deterministic tasks with one-way
dependencies. This is a model that is vastly explored in the
parallel computing literature (e.g. [75, 77]) and many recent
frameworks [1, 19, 22, 44, 85].

A DAG specifies tasks with well-defined outputs and input
dependencies. A task can run when all of its dependencies
have already run and produced outputs. When scheduling a
DAG on a distributed system, it is important to balance two
conflicting constraints: increasing parallelism, and avoid-
ing data transfers. Doing this optimally with realistic as-
sumptions is an NP-hard problem [75], and there are many
heuristics to do this both statically and dynamically, on both
parallel and distributed systems.

t r ivia l
n o_com m

d om t r e e r a n d om _n e a r e s t

s t e n c il_1 d
s t e n c il_1 d _p e r iod ic

a ll_to_a ll
fft n e a r e s t

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

R
u

n
ti

m
e

(s
ec

)

Ob liviou s : Ra n d om Op t im a l

Figure 2. Performance gap of Dask on a locality-oblivious
FaaS platformwith a distributed in-memory cache, compared
to an optimally-scheduled execution. Benchmarks are from
Task Bench [77]. The optimal schedule is calculated offline
based on pre-recorded runtimes and transfer sizes. Palette
seeks to bridge the gap between Oblivious and Optimal via
a practical change to the load balancer.

To illustrate the potential impact of locality, we imple-
mented a serverless version of the Dask Distributed sched-
uler [22], on top of the open source Azure Functions host
code [11], where each node in the DAG runs as a serverless
invocation. Intermediate data is written to a remote object
store, interposed by a modified version of the Faa$T server-
less cache [70]. Figure 2 shows the results of running 10
benchmarks from the Task Bench suite [77] on four function
instances, using the standard serverless load balancing strat-
egy which is oblivious to locality (‘Oblivious’). The setup is
the same as the one described later in Section 7. We compare
Oblivious to the runtime of an optimal schedule (‘Optimal’),
computed using a mixed-integer linear program [79]. Opti-
mal schedules the tasks on the four function instances in-
corporating compute times and network transfer sizes from
real executions. The figure shows that Opt reduces running

Scale
Controller

Serverless
Platform

Invocations

Worker

Worker

Worker

...C
ol

or
in

g
P

ol
ic

y

C
ol

or
S

ch
ed

ul
in

g
P

ol
ic

y

P
al

et
te

 L
B

User
Applications

f(◦,c)f(◦)

Colored
Invocations

Figure 3. Palette architecture. Invocations (𝑓 (◦)) carry a
locality hint, or color (𝑓 (◦, 𝑐)), and invocations with the same
color go to the same set of instances. Users express locality
via their coloring policy, and the platform maps colors to
instances using a color scheduling policy.

times by more than half on eight workloads and by more
than 1/3 on the remaining two workloads.1

4 Palette: Serverless Locality
From Section 3, exploiting locality can significantly benefit
FaaS users and platforms. However, the challenge lies in
exposing locality without removing the ‘serverless’ nature
of the platform.
Colors: Locality Hints. Palette augments the interface to
FaaS with a single opaque and optional parameter, which
we call color. Like in the pFaaS proposal [71], an invocation
𝑓 (params) becomes 𝑓 (params, color), with the difference that
a color is a hint. Colors have the following semantics:

The platform will route invocations with the same
color (in a best-effort way) to the same instance
or set of instances.

Our goal is to find the smallest interface extension that
enables clients to express locality so that the platform can
optimize for it, without exposing details that remove the
provider’s flexibility to do resource management.

Colors have two important properties. First, they are opaque,
and enable a strong separation of concerns that maintains
the serverless nature of the platform. Users decide how to
color invocations via a coloring policy, encoding their knowl-
edge of locality and data dependencies, without referring
to specific instances or workers. The platform, on the other
hand, is responsible for routing invocations to instances via
a color scheduling policy.

The second important property is that colors are hints, and
not hard constraints. For the user, this means the application
should still be correct even if the hint is ignored by the
platform. Because of this, while the platform can use the hint
to make decisions that improve the performance to the user,
it still has the freedom to allocate and de-allocate resources.
A hard constraint would get closer to an allocation request
from the user, and might imply a different charging model.

Figure 3 shows the Palette architecture, in contrast to Fig-
ure 1. The namespace of colors is scoped to each application;
1We could not finish the Opt computation for All-to-All within a reasonable
time window.

Palette Load Balancing: Locality Hints for Serverless Functions EuroSys ’23, May 9–12, 2023, Rome, Italy

Palette does not introduce new data sharing or interference
among different applications.

(a) (b)

Figure 4. Sketches of coloring policies for serverless (a)
social network and (b) DAG processing. In (a), requests re-
ferring to the same post get the same color (e.g., post_id).
In (b), chains of tasks in the DAG get the same color, such
that most inter-task transfers land in the same node.

Using Colors. Coloring executions can improve the per-
formance of functions in the two use cases from Section 3.
Figure 4 provides intuition for possible coloring policies (we
describe these policies in Section 6). Figure 4a shows re-
quests from two users in a social network to a post by a
common friend. If the two requests use the post_id as the
locality hint, and get executed in the same instance, the sec-
ond request can potentially read the post from a local cache.
Figure 4b shows a simple DAG, where nodes represent tasks,
and arrows, data dependencies. If there are two instances
to run the middle tasks in parallel, coloring the tasks in the
chains as shown minimizes the cross-node transfers.
There are of course applications which will not bene-

fit from locality. These include truly stateless applications,
where one invocation does not leave any state behind that is
relevant for future invocations; and applications where there
may be caching of data (such as an inference model that has
to be loaded from storage), but where this data is the same
for all invocations. Being optional, not using Palette hints in
these cases does not impose any extra costs.

5 Implementation
Palette is designed to be easy to deploy into existing FaaS
platforms. The API for application writers is simply an op-
tional extra parameter in an invocation. For HTTP triggers,
for example, we implement colors as a locality URL param-
eter, which is trivial to add from a client, and to interpret by
the load balancer. The main questions for the provider when
implementing Palette load balancing are the color schedul-
ing policy (Figure 3) for how to map colors to instances, and
how to potentially use colors to help with autoscaling.
Load Balancing. We implement Palette as a custom load
balancer in Python that receives HTTP-triggered requests
and sends them to workers running the open source ver-
sion of the Azure Functions Host [11]. Our load balancer is
integrated with the scale controller (Figure 3).
For the web API case, we run functions in unmodified

functions host instances (§7.1). For DAG processing, we use
a modified version of the Faa$T serverless cache [70].

Hashing Bucket Hashing Color Table (LA)

Summary 𝐼 (𝑐) = H𝐼 (𝑐) 𝐼 (𝑐) = BT[H𝐵 (𝑐)] 𝐼 (𝑐) = LA[𝑐]
State - O(B) O(c) (capped)
LB poor better best

Table 1. Comparison between the three color scheduling
policies. 𝐼 (𝑐) is the instance for color 𝑐 . H𝐼 and H𝐵 are hash
functions onto instances and buckets; BT[◦] and LA[◦] are
bucket and color table lookups. We set both 𝐵 and the cap
for the LA table at 16,384.

100 1000 10K

1

2

3

4

5

A
v
e
ra

g
e
 R

e
la

ti
v
e

M
a
x
im

u
m

 L
o
a
d

Instances: 20

Colors
100

1000

10000

1000000

100 1000 10K

Instances: 100

100 1000 10K

Number of Buckets

Instances: 1000

Figure 5. Relative maximum load (maximum / average col-
ors per instance) for Bucket Hashing, for different numbers
of instances, colors, and buckets. Results for each setting
averaged over 20 simulations. The dashed lines show the
relative maximum load for simple hashing.

Color Scheduling Policy. We implement three color sched-
uling policies in Palette, summarized in Table 1, with differ-
ent trade-offs: (consistent) hashing, bucket hashing, least-
assigned color. The goal of these policies is to map a color
(received from the user invocation) onto an instance of the
application. This mapping is kept by the load balancer per
application. For the three options we assume the Palette load
balancer has an up-to-date list of the application instances.

Hashing: the simplest color mapping policy is hashing:
it requires no extra state besides the current list of instances,
which the load balancer already has. The downside is that
hashing is equivalent to random assignment of colors to
instances [66], and produces load imbalance that can signif-
icantly impact the runtime of functions [57]. In our imple-
mentation we use Consistent Hashing [49] as it minimizes
invalid mappings upon membership changes.

Bucket Hashing (BH): one approach to alleviate the load
imbalance of hashing while bounding the storage needs is to
introduce an indirection. We hash colors into a fixed set of 𝐵
buckets, and then assign buckets to instances in away that im-
proves the load balance. While the optimal such assignment
is NP-hard, a simple greedy algorithm that assigns a bucket
to the instance with the least colors is a 2-approximation [41].
Variations of bucket hashing are used, for example, in Dy-
namo [23] and Redis [69].

EuroSys ’23, May 9–12, 2023, Rome, Italy Abdi et al.

Figure 5 shows the relative worst-case number of colors
(maximum / expected) for simulations of the bucket hash-
ing algorithm, averaged over 20 runs each, with different
numbers of instances, colors, and buckets. For comparison,
the figure also shows the maximum load for simple hashing.
We see that for more than 1,000 colors, and a number of
buckets 10, 000, we can keep the relative load ≤ 2, and often
much closer to 1. In our implementation we choose the same
number of buckets as Redis, 16,384. 2
The load balancer keeps a fixed bucket table (BT) with 𝐵

entries per application. It also keeps an approximate count of
colors recently mapped to each bucket, using count distinct
sketches (HyperLogLog [31]). More specifically, it starts a
newHLL sketch every 30 minutes, while keeping a sketch for
the previous 30 minutes. Every 30 minutes the LB merges the
two last HLL sketches, and swaps buckets among instances
until the maximum relative number of colors per instance is
below a threshold, which we set to 2 according to Figure 5.

Color Table (Least Assigned): The last color scheduling
policy we use is a table explicitly mapping colors to instances.
When a new color arrives, the load balancer chooses the
instance with the least assigned colors, breaking ties arbi-
trarily, and stores the mapping in an “LA” table. When the
scale controller adds new instances, they naturally get new
assignments; when it removes instances, colors from the
removed nodes are distributed using the same policy.
To avoid this table growing without bounds, we evict

mappings from this table using LRU. Since colors are hints,
this has no effect in correctness, even though it may affect
performance. This policy achieves the best load balancing,
but is not suitable for applications with very large numbers
of colors. To keep the memory usage similar to that of BH,
our implementation caps the number of colors to 16,384, and
truncates the color names at 32 bytes. With this setting, we
use a maximum of 512KB of data per application.
Each application in our system can use these policies in-

dependently of other applications. The user chooses one of
the policies upon registering the application. In practice, the
real choice lies between Bucket Hashing and Least Assigned.
Applications with more than 16K colors should choose BH,
while applications with less colors that are sensitive to load
imbalance should choose LA.
In addition to these three policies, we also implemented

two baseline policies for comparison: oblivious, which al-
ways selects a random instance for each invocation, and
oblivious round-robin, which ignores locality, but sends re-
quests to instances in a round-robin fashion, to improve load
balancing among instances.
Scaling. In this paper, the Palette load balancer assigns
colors to existing instances, and scaling decisions are done
separately by the scale controller. The only assumption we
2For these simulations we assume at most one instance per color, and it
does not make sense to have less buckets or less colors than instances.

make in our prototype and evaluation is that there is a single
active instance per color at any time (one instance can still
have several colors). This is a point in the design space that
is easy to implement and to reason about for the client, and
is compatible with existing scaling policies (e.g., [27, 36, 87])
with little to no modification. Scaling in and out will change
the mapping of colors to instances, and locality – but not
correctness – can suffer for colors that move. Other designs
are also possible, for example, lifting the restriction of one
instance per color, which can prevent hot spots, but also
diffuses locality. We leave a deeper look at the interaction of
the coloring and scaling policies, including the implications
of instance churn, color rebalancing, and the use of colors
as hints for rapid autoscaling, for future work.

5.1 Integration with the Faa$T Serverless Cache
For efficiently implementing the DAG use cases, we used a
modified version of the open source Faa$T serverless cache [70]
integrated with the open-source Azure Functions host. Both
Faa$T and OFC [59] implement distributed object caches
among multiple instances of a serverless application, while
maintaining the caches for different applications indepen-
dent and isolated.
The two requirements for our application are that (i) an

object generated at a particular worker stays cached on that
worker until it is evicted or the worker is stopped, and that
(ii) other instances can find the object. The first avoids push-
ing objects to other nodes, and the second guarantees that
we have a hit in a peer cache rather than a miss to the back-
ing store. OFC satisfies these requirements, as it uses RAM-
Cloud [63] as its in-memory cache. Faa$T originally does not,
as it determines the home location of an object via consistent
hashing of the object’s name. We modified Faa$T by adding
an optional hashing key to the object names. When the name
of an object has a prefix separated by a token string (‘___’),
the cache uses this prefix as the hashing key to determine
the home location. Redis uses the same approach to enable
multi-key transactions [69].

The client DAG application, when specifying input (𝑖) and
output (𝑜) objects of task 𝑓 , adds the color of the producing
tasks to the names of the objects (e.g., 𝑖𝑐), in addition to
adding the color to the task itself (𝑐 𝑓):

𝑓𝑐 𝑓 (𝑖𝑐1, 𝑖𝑐2, ..., 𝑖𝑐𝑛) → 𝑜𝑐 𝑓

When submitting this task, the Palette load balancer deter-
mines the instance 𝐼 (𝑐 𝑓) that will run the task, and translates
the colors of the inputs and outputs so that they hash to the
correct instances. Because the consistent hashing function is
the identity function when the argument is the name of one
of the members of the ring (i.e., 𝐶𝐻 (𝐼 (𝑐)) = 𝐼 (𝑐)), Palette
simply translates color 𝑐𝑘 to 𝐼 (𝑐𝑘), and the invocation above
becomes:

𝑓𝑐 𝑓 (𝑖𝐼 (𝑐1) , 𝑖𝐼 (𝑐2) , ..., 𝑖𝐼 (𝑐𝑛)) → 𝑜𝐼 (𝑐 𝑓) .

Palette Load Balancing: Locality Hints for Serverless Functions EuroSys ’23, May 9–12, 2023, Rome, Italy

6 Application Coloring Policies
To evaluate the usefulness and effectiveness of Palette, we
implemented three representative applications of the two
use cases from Section 3.

6.1 Social Network
As a representative of a serverless API to a web application,
we modified a FaaS implementation of the Social Network
application from the DeathStar benchmark [38], obtained
from the authors. The application is implemented in Python,
as a collection of microservices that perform basic functions
such as fetching user profiles, timelines, and posts. The data
for the site is stored in MongoDB.
We augmented the function implementations with an in-

memory read-only LRU cache that stores objects such as
posts, images, and friends lists. We implement the cache in
the function code via a global variable, which is part of the
ephemeral state that remains in the instance local memory
after function invocation. The cache is thus shared across suc-
cessive invocations until the platform reclaims the instance.
This is a pattern recommended by FaaS providers [8, 14], and
requires no support from the platform.

To use Palette, the social network client adds color hints to
requests, like in Figure 4a. Specifically, get_user_timeline
uses the user_id as the color; each subsequent get_post
and get_media calls are colored, respectively, with the post
id and object id. This causes the Palette load balancer to
direct all calls that fetch a specific object to a single instance,
and enables the client to indirectly control the partitioning
of the aggregate cache space, even though Palette is agnostic
to the semantics of the application.
In Section 7.1, we evaluate the aggregate hit ratio of this

coloring policy against two baseline policies: Oblivious (which
routes requests to random instances) and Bucket Hash.

6.2 DAG Computations
6.2.1 Coloring DAGs. Palette provides great flexibility
to express DAG computations in serverless. Intuitively, we
want to color DAGs nodes so as to reduce unnecessary data
transfers among nodes. We implement two DAG frameworks
on FaaS, where each node of the DAG is one invocation,
and their outputs are cached on the workers that run each
node. We use the Faa$T serverless cache (§5.1), so that an
invocation can fetch inputs from the remote workers where
they were produced, if not evicted yet.

We describe two DAG coloring policies for Palette: color-
ing the DAG from first principles, and a nearly-transparent
policy that reuses existing frameworks’ schedulers. We com-
pare these two approaches for a FaaS implementation of
Dask [22], and demonstrate the flexibility of the second for
an additional system, the NumS linear algebra library [29].

Chain Coloring. When executing a DAG in parallel, we
want to exploit parallelism opportunities, and reduce data

transfers. Because of the separation of concerns that col-
ors create, we can treat the coloring of a DAG as a parallel
scheduling problem with an unbounded number of workers
(where each worker is a color), and leave the mapping of
colors to instances to the serverless platform (cf. §5).
There is a vast literature on static scheduling of parallel

DAG computations [75], with many applicable algorithms.
As an example, we chose a simple heuristic which we refer to
as Chain Coloring: we partition the DAG into chains (simple
paths), and assign a separate color to each chain. Optimal
chain partitioning of a DAG (minimum number of chains)
takes 𝑂 (𝑛3) [37]. Instead, we use a simpler greedy partition-
ing based on recursively finding and removing longest paths
on a topologically sorted DAG (see [74], algorithm B). This
algorithm runs in linear time𝑂 (𝑣 + 𝑒), and tends to get close
to the minimum number of chains.

Chain coloring has three useful properties: (i) every node
in a simple chain (a path in the DAG with no fan-ins or fan-
outs) will have the same color (meaning no external data
transfers); (ii) no nodes that can be executed in parallel will
have the same color (giving the platform the opportunity to
maximize parallelism); and (iii) for fan-outs and fan-ins, only
one of the chains “continues”. Chain coloring can achieve
good performance, but not always: because it maximizes
parallelism, if network transfers are too expensive their cost
can dominate the execution.
Bring your own scheduler – Virtual Workers. An alter-
native to manually coloring a DAG is to reuse the scheduling
policies that frameworks already have. Typically, schedulers
in frameworks like Dask work with a set of workers that
dynamically connect to it. They keep detailed information on
the load, memory usage, and sets of stored objects for each
worker. With this information they can produce a dynamic
schedule that takes into account locality, load balancing, and
memory usage of the cluster.

Coloring of tasks can be implemented by introducing the
concept of “virtual workers”. These workers do not have to
map to actual instances in the system, but we can assign
colors to each of them and the tasks they produce. From
the point of view of the scheduler, each virtual worker is an
actual worker, and it can continue to make scheduling deci-
sions under that assumption. In reality, each virtual worker
colors all of its invocations with its own color. This, in prin-
ciple, is similar to user-level, or green threads,which appear
as threads to applications, but are mapped onto hardware
threads by the OS. To show the generality of this abstraction,
we implement this on two DAG processing systems, Dask
and NumS, and evaluate their performance in in Section 7.

6.2.2 Dask. Dask [22] is a popular Python library for par-
allel task-based DAG computing. We modified Dask to run
on FaaS by first factoring out all intermediate state onto a re-
mote object store. We then create and register with the FaaS
framework a function that is essentially “eval”: it receives the

EuroSys ’23, May 9–12, 2023, Rome, Italy Abdi et al.

serialized code to be run, references to inputs, and stores its
output on the remote store. We use the open source version
of Azure Functions [11], and use our modified version of the
Faa$T cache to interpose on all accesses to the object store.
We implement two versions of Dask: (a) with a custom

scheduling policy that performs chain coloring, and (b) with
an unmodified scheduler using virtual workers. In case of
the chain coloring policy, we modify the scheduler to color
the graph as described in Section 6.2. Based on the assigned
colors, the Dask scheduler then dispatches the requests to
the Azure Functions backend. Providing colors as part of the
requests allows the backend to efficiently retrieve the inputs
from the instances that produced them.
For the virtual workers approach, we extend the worker

interface in Dask and introduce a shim that acts as virtual
workers. These pretend to be regular workers to the sched-
uler, but instead send each execution request to Palette as
a serverless invocation. This shim layer assigns a color to
each virtual worker and all invocations from that worker
get ‘painted’ with the worker’s color. Tasks scheduled for
that virtual worker will then be routed by Palette’s load bal-
ancer on to the same serverless instance(s). This approach
transparently translates the scheduler’s notion of locality to
Palette’s implementation of locality.

6.2.3 NumS. The NumS [29] numerical library enables
NumPy code to seamlessly run on distributed systems by
scaling operations horizontally. It translates linear algebra
operations written in the NumPy API into a DAG of smaller
computation tasks. Currently, NumS uses Ray [67] as a back-
end for running the computations. The user registers a pre-
provisioned fixed-size Ray cluster with NumS and the cluster
exposes a set of “devices” on which NumS can schedule tasks.
NumS has sophisticated algorithms to map blocked array op-
erations onto the devices, to balance locality and parallelism.
The actual computation is done asynchronously and only
the retrieval of an output results in a blocking call.
We implement a Palette backend on top of Azure Func-

tions running with the Faa$T cache, similar to the Dask
implementation. We use the virtual workers approach: the
NumS scheduler remains unmodified and we add a shim that
interacts with Palette. This shim consists of only 114 lines of
Python, the other part of the implementation being the code
that runs as FaaS, with about 135 lines of Python. The server-
less nature of this backend obviates the need to register a
provisioned cluster of resources with NumS. This backend
exposes a flexible number of devices to NumS, and internally
does a one-to-one mapping of the deviceIds chosen by NumS
for each operation onto Palette colors.

We let the scheduler pick from a large number of devices
that are mapped to colors and as such may or may not map
to actual instances on the backend. Output objects are also
assigned the color of the instance that produces them to

make it possible for our backend to retrieve it from the cor-
rect one when required. We maintain the model that the
existing Ray backend provides, of asynchronous computa-
tions and retrieval of outputs values only when required. To
achieve this, we use “futures” [65] to encapsulate the state
of dispatched tasks which are otherwise blocking calls to
Azure Functions. The shim seamlessly handles the retrieval
of results from these futures when required and ensures that
the instances start executing tasks only when the depen-
dencies have been satisfied by prior tasks. As a result, our
implementation requires no changes to the NumS API and
can run existing programs without modifications. We show
in Section 7.2.4 that our use of the virtual workers approach
produces schedules that are competitive with NumS on a
serverful backend (i.e., Ray).

6.3 Discussion

Dynamic Policies. While we do not evaluate these, clients
can use colors to implement interesting dynamic policies.
For a DAG, for example, in the case of a fan-in, we can defer
coloring the downstream node until we know the sizes of
all inputs, and choose the color of the largest input. Alterna-
tively, we can implement prefetching. Suppose a blue task
𝑏2 depends on a blue task 𝑏1 and on a red task 𝑟1, and that 𝑟1
finishes first. The scheduler can create a dummy blue task
𝑏′ that only depends on 𝑟1. 𝑏′ can run immediately, and has
the only effect of causing the output of 𝑟1 to be fetched by
the instance running blue tasks. In the case of a fan-out, we
can also use the same technique of dummy tasks to cause
the output of the fan-out source to be pre-fetched by all the
downstream colors.
Who colors? Palette enables flexible and dynamic policies,
and, when applicable, using virtual workers (cf. § 6.2) makes
this transparent. We expect that in many cases framework
and application developers, and even query planners, but
not end users, will generate coloring hints.

7 Evaluation
We evaluate our prototype of Palette on: a web application;
the Dask Python DAG execution engine [22] with three dif-
ferent workload sets; and the NumS distributed framework
which implements the NumPy API.
Setup. Unless otherwise noted, we run our experiments
using a client VM, and a cluster of up to 48 worker VMs. The
client VM is an Azure Standard E8asv4 VMs with 8 vCPUs
(AMD EPYC 7452) and 64GiB of RAM, running Ubuntu 18.04.
Each function worker runs on an Azure Standard D4sv3 with
4 vCPUs (Intel Xeon E5-2673) and 16 GiB of RAM, running
Ubuntu Linux v20.04. The bandwidth between all VMs is
1.86Gbps. For all of the DAG applications, we select the
problem sizes so that the output sizes of individual nodes in
the DAG fit within serverless function memory limitations.
To approximate current non-premium commercial serverless

Palette Load Balancing: Locality Hints for Serverless Functions EuroSys ’23, May 9–12, 2023, Rome, Italy

offerings (§2), we throttle the network to 1Gbps. For easier
understanding of the results, we limit each function worker
(and Dask worker) to a single vCPU. When using the Faa$T
cache, we set the cache size per function instance to 8GB.
The goal of this paper is to evaluate the potential benefit of
locality for FaaS, and not the performance of the caching
system, which was well explored in the literature [59, 70].
As such, we avoid cache evictions, and configure Faa$T to
keep intermediate data only in memory, instead of writing
it back to storage.

7.1 Web Application
In our first experiment, we augment a serverless implemen-
tation of a Social Network web application benchmark [38]
with a local, in-memory cache for objects (§6.1).

Methodology. The goal of this experiment is to demon-
strate the advantage of locality hints to enable cache pooling.
We compare two color scheduling policies: Oblivious (stan-
dard FaaS scheduling), and Palette with Bucket Hashing. The
client uses the object id as the locality key (§6.1).

We run the social network client and the MongoDB back-
end in our client VM, and use 1-24 function worker VMs.
The goal of this experiment is not to measure the perfor-
mance or load capacity of the components, but to examine
the aggregate hit ratio on the local caches.

We preload the MongoDB with the socfb-Reed98 [30] so-
cial network graph and 20 posts per user. Each post has a
random text with size drawn from a uniform distribution
between 64B and 1KB, and a random number of media uni-
formly distributed between 1 and 5. The media files have
an average size of 1MB, with 25𝑡ℎ , 50𝑡ℎ , 75𝑡ℎ , and 100𝑡ℎ per-
centiles respectively 62KB, 1MB, 2MB, and 8MB.We obtained
this distribution by scrolling through Instagram in September
2021 and recording the sizes of 1465 images downloaded by a
desktop browser. Our client selects users from a Zipf distribu-
tion with parameter 0.9 and sends 72,000 ReadHomeTimeline
and ReadUserTimeline requests (with 50% ReadHomeTime-
line and 50% ReadUserTimeline). We replay this same trace
in all the social network experiments. Since we were just
interested in the benefits to locality of the local caches, we
emulate a read-only workload. The resulting trace has 2.6
million accesses to 1.1 million unique objects, which com-
prise a total of 115GB of data. We further assume requests
are close enough in time to avoid application instances from
being unloaded for inactivity.

Finding 1: Locality hints effectively allow a serverless web
application to transparently partition its local caches. Figure 6a
plots the hit ratio in the in-memory local caches, aggregated
across all instances, and all request types, as a function of
the number of instances. As the number of function workers
increases from 1 to 24, we find that Oblivious’ cache hit ratio
stays around 4%. This is expected: as similar request gets
routed to different caches, Oblivious has a high rate of cold

0

5

10

15

20

25

12 6 12 24

Function workers

H
it

ra
tio

 [%
]

Palette
Oblivious

(a)

0

10

20

30

40

50

60

0.01 0.1 1 10 100

100 1000 10000 100000 1x106

H
it

R
at

io
 [%

]

Cache Size (GB)

Cache Size (Objects)

HRC (Objects)

HRC (GB)

(b)

Figure 6. (a) Cache effectiveness in the Social Network
benchmark, comparing Oblivious and Bucket Hashing color
scheduling policies. (b) Simulated hit ratio vs all cache sizes
for ideal LRU cache with the Social Network workload. With
3GB of space we achieve ∼ 24% HR (blue dotted arrow), but
if limited to 16K objects, we only achieve ∼ 19% HR (red
dashed arrow).

misses, and wastes a lot of the aggregate cache space with
redundant copies of the most popular objects. In contrast, we
find that Palette’s cache hit ratio increases from 4% to 24%.
This finding is aligned with prior work that documented the
benefits of partitioning for caching effectiveness [5, 18, 23,
40, 55, 60]. Our evaluation shows that locality hints enable
similar effectiveness in serverless applications.

Finding 2: For applications with a large number of col-
ors, Bucket Hashing achieves the best trade-off between space
and load balancing. As discussed in §5, Palette’s Color Table
can achieve optimal load balancing but caps the number of
colors to 16,384. This means that the 16,385-th color leads
to an eviction from the Color Table (LRU). The next time
that evicted color is accessed, Palette does not remember its
previous assignment which means that a cache hit for this
color’s objects is unlikely. The Color Table limits the effec-
tive cache size to 16k objects. Figure 6b shows a complete hit
ratio curve for this workload. The blue dotted line shows the
hit ratio of our experiment with an aggregate cache size of
3GB. If limited to 16K objects, the hit ratio is limited to less
than 20% (red dashed line). More generally, a Color Table
has to grow in proportion to the aggregate cache size not
to become the limiting factor for the hit ratio. In contrast,
Bucket Hashing can scale to any cache size and achieves 24%
hit ratio, which means that it partitions the cache size near
perfectly: with𝑁 instances, it achieves an effective aggregate
cache size 𝑁× larger than a single instance.

The color table limitation here is an example of what hap-
pens when the platform cannot heed the advice of the color
hints: performance, but not correctness, may be affected. Fig-
ure 6b also shows that only remembering 1,000 colors would
lead to a hit ratio of less than 5%.

EuroSys ’23, May 9–12, 2023, Rome, Italy Abdi et al.

…

10

1

2
25

6M
B

[C CPU ops]

(a)

200 400 600 800 1000

CPU ops/graph node (×106)

10

20

30

40

50

R
u

n
ti

m
e
 (

se
c)

Palette: Same Color

Palette: Chain coloring

(b)

Figure 7. (a) Fanout test DAG; and (b) the total time for two
coloring policies as the CPU cost increases relative to the
network transfer cost.
7.2 Data Analytics
Weevaluate serverless data analytics on two systems, Dask [22],
and the NumS distributed framework which implements the
NumPy API [29]. For the coloring policy we use either the
chain coloring or virtual workers (cf. §6.2).

We compare Palette to Oblivious which emulates state-of-
the-art FaaS systems that cache objects in far memory [51,
52] via a fast protocol to access objects in other workers’
caches. Our baseline is a serverless, unmodified version of
Dask and NumS. In addition, we use Dask as a way to validate
a key implementation choice: by comparing the Consistent
Hashing and Color Table color scheduling policies, we can
separate the benefits of locality and better load balancing.

We use multiple sets of benchmarks. First, a synthetic mi-
crobenchmark helps us explore a key tradeoff that will help
in understanding subsequent evaluation results. Second, we
use Task Bench [77], which is a benchmark for evaluating
parallel and distributed programming runtimes. Third, we
use TPC-H 3.0 [80], which consists of a suite of business ori-
ented large data queries with a focus on queries with a high
degree of complexity. In both benchmarks, we focus on the
end-to-end run time, i.e., the time until the last task/depen-
dency has completed and the result is returned. Our figures
show barplots with standard error indicated by black lines.

7.2.1 DaskMicrobenchmark. Using the Task Bench frame-
work, we create a small DAG, which we call fanout, shown
in Figure 7a. The DAG has a single task whose 256MB output
is consumed by 10 other parallel tasks. For each experiment
each of the (10+1) task runs 𝐶 CPU operations, and we vary
𝐶 from 220 to 230 operations per task.

We compare two extreme coloring policies for this DAG:
chain coloring, which maximizes parallelism in a fanout,
using 10 colors; and a ‘Same Color’ policy that maximizes
locality and colors all 11 nodes with the same color. We run
the experiment with Palette’s Least Assigned color schedul-
ing policy, with a total of 10 workers with one vCPU each,
and 5 runs for each setting.
Finding 3: Palette allows great flexibility in the choice of

the coloring policy by the application and this flexibility helps

improve run times. As shown in Figure 7b, with few CPU ops
per task, the gains from parallelism do not compensate for
the network latency, and ‘Same Color’ performs better. How-
ever, ‘Same Color’ schedules all tasks on the same worker,
and their makespan increases linearly with the per-task CPU
demand. Quickly it becomes better to shift to a policy that
favors more colors, and more parallelism. Dask’s native pol-
icy (which we use when using the Virtual Nodes coloring
policy), tends to favor locality, and typically colors fanouts
with the same color.

7.2.2 Task Bench on Dask. Task Bench is a configurable
set of DAG-based benchmarks. We consider two different
configurations: the first has balanced computation and net-
work transfer times (Fig. 8a) and the second one stresses com-
putational resources, which leads Dask to distribute tasks
across more workers (Fig. 8b) . Within each configuration,
we order benchmarks by how frequently their tasks require
inter-worker data transfers, which roughly corresponds to
the density of edges in the computation DAG. The “triv-
ial” and “no_comm” benchmarks require no inter-worker
transfers whereas almost every task in the “fft” and “nearest”
benchmarks requires inputs from a task on another worker.

For Palette, we use chain coloring as coloring policy, and
compare four different color scheduling policies against
serverful Dask (unmodified). The four serverless implemen-
tations differ along two orthogonal dimensions: whether
they implement locality (Oblivious vs Palette) and how well
they load balance computational load across workers (table
to the right of Fig. 8a). For Oblivious, load balancing is im-
plemented by placing function executions in a round-robin
fashion on workers. For Palette, load balancing is imple-
mented via the least-assigned (LA) Color Table approach
(§5), whereas Palette with consistent hashing (CH) is less
load balanced.

Finding 4: Locality hints enable serverless analytics to fully
leverage a local cache, outperforming locality-oblivious far-
memory solutions by 46%. Fig. 8a shows that both versions of
Palette outperform Oblivious on every benchmark. On aver-
age, Palette reduces runtimes by more than 46% compared
to Oblivious, independent of load balancing.

Finding 5: Palette is competitive with Dask for computation
DAGs with many inter-worker data transfers. The left half of
benchmarks in Fig. 8a has few inter-worker data transfers
and the gap between Palette and serverful Dask remains
significant. In contrast, in the right half of benchmarks, with
many inter-worker transfers, the gap is less than 25%. This
happensmostly because of the extra serialization overhead of
our Palette implementation. In serverful Dask, workers only
serialize an object when transferring to another worker. Our
prototype serializes every object, and this happens on the
critical path. The serialization overhead is not fundamental,
and is a potential target for optimization.

Palette Load Balancing: Locality Hints for Serverless Functions EuroSys ’23, May 9–12, 2023, Rome, Italy

trivial
no_comm

dom tree
random_nearest

stencil_1d
stencil_1dperiodic

all_to_all
fft nearest

0

2

4

6

8

R
u

n
ti

m
e

n
or

m
al

iz
ed

to
 S

er
ve

rf
u

l D
as

k

Serverful Dask

Oblivious: Random
Oblivious: Round Robin (RR)

Palette: Consistent Hashing (CH)
Palette: Least-Assigned (LA)

Average runtime differences:

Oblivious
Random

Oblivious
RR

Palee
CH

Palee
LA

-7.5%

-11%

-47.8%-45.8%

Load Balancing

Lo
ca

lit
y

(a) Task Bench evaluation with 60M CPU ops/graph node and 256MB output size per task. Locality matters more than load balancing.

0

1

2

3

4

trivial
no_comm

dom tree
random_nearest

stencil_1d
stencil_1dperiodic

all_to_all
fft nearest

R
u

n
ti

m
e

n
or

m
al

iz
ed

to
 S

er
ve

rf
u

l D
as

k

Serverful Dask

Average runtime differences:

Oblivious
Random

Oblivious
RR

Palee
CH

Palee
LA

-20%

-26.8%

-38.9%-33.1%

Load Balancing

Lo
ca

lit
y

(b) Like 8a but with 600M CPU ops/graph node. Load balancing becomes more important but locality continues to matter more.

Figure 8. Task Bench results comparing variants of Palette to variants of the state-of-the-art FaaS load balancer (Oblivious),
and to a serverless and unmodified version of Dask. The four serverless variants use the chain-coloring scheduler (§6.2).

Finding 6: Palette is competitive with Dask for tasks that
are compute intensive and require distributing across multiple
workers. Fig. 8b increases each task’s computation load by
10× compared to Fig. 8a. This means that it becomes more im-
portant to parallelize work by distributing it across workers,
which plays into the strengths of a serverless platform and
Palette. Specifically, even the left half of benchmarks require
some cross-worker transfers so that Palette’s overheads be-
come less relevant. Overall, the runtime of Palette with a
least-assign Color Table is now within 15% of Dask on all
benchmarks. We also observe that the impact of load balanc-
ing decisions becomes more important: we see a more than
20% runtime difference between Random and Round Robin,
and Consistent Hashing and Least Assign, respectively. This
shows the importance of supporting a Color Table in Palette.

7.2.3 TPC-H on Dask. TPC-H contains ad-hoc queries
and concurrent data modifications selected for their industry
relevance. Compared to Task Bench, TPC-H queries have
significantly larger and less regular DAGs. We consider all
22 queries, with objects sized at 2GB and divided into 256MB
blocks. We run the queries on serverless Dask using the vir-
tual node coloring policy (there was no significant difference
with chain coloring, other than the fact that VN used less col-
ors, because of some fan-outs). We use two color scheduling
policies, Oblivious Round Robin and Palette Least Assigned,
and run on the same cluster of 48 function workers. Figure 9
shows the end-to-end time of all queries, normalized to the
runtime of serverful Dask on the same nodes.
Finding 7: Across all queries, Palette is on average 40%

faster than Oblivious, and significantly closes the gap between
far memory systems and serverful Dask.We find similar rea-
sons as in the Task Bench results: RR spends significantly
more time transferring data, as most inputs are from remote

caches, and most outputs must be transferred to another
cache which owns the object. Across all queries, the median
RR query transfers over 5.9 times more data over the net-
work than Palette. In this sense, Oblivious Round Robin is
similar to FaaS data analytics that use far-memory storage,
such as Pocket or Jiffy [51, 52].
Compared to serverful Dask, in 9 out of the 22 queries

Palette is within 15% of the performance of Dask. In 5 of the
queries Palette is more than 75% slower than Dask (queries 3,
4, 10, 12, and 17). These queries are some of the ones with the
largest amount of data transfer. Serialization costs, as well as
queueing in the Python async io event loop are responsible
for most of the differences relative to Dask.

7.2.4 NumS. Methodology. For NumS, we compare the
existing Ray backend with the Palette implementation, evalu-
ated with three color scheduling policies: Oblivious Random,
Oblivious Round Robin, and Least Assigned. We run each of
the backends with equivalent resources. In the case of Ray,
it is deployed on Kubernetes [54] with a VM SKU which has
16 vCPUs and 64GB of memory. 16 such VMs were assigned
for running the Ray workers. We run the three Palette color
scheduling policies on the same VM SKU, with a maximum
of 16 workers available to them for a fair comparison.
We run three benchmarks. The first is a logistic regres-

sion workload using Newton’s method on the Higgs boson
dataset [26] (LRHiggs). We describe the individual phases of
this workload using a code snippet as shown in Listing 1. The
first two phases involve data movement and manipulation,
and the last two phases are computation-heavy, where the
model is fit and a prediction is made.
The second and third benchmarks perform dense square

matrix-matrix multiplication with 2GB and 16GB (MMM-
2GB and MMM-16GB) of synthetic data, respectively.

EuroSys ’23, May 9–12, 2023, Rome, Italy Abdi et al.

0

1

2

3

4

5

S e r ve r fu l Da sk

Ob liviou s : Rou n d Rob in (RR)

Pa le t t e : Le a s t Ass ig n (LA)

R
u

n
ti

m
e

n
or

m
al

iz
ed

to
 S

er
ve

rf
u

l D
as

k

1 62 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 9. TPC-H evaluation results comparing Palette to a representation of today’s FaaS load balancers (Oblivious), an
implementation variant of Palette (Virtual worker) and (Chain-coloring), an unmodified version of Dask running on dedicated
services (Serverful Dask). Here, Palette and Oblivious use the virtual worker policy (§6.2).

from nums import numpy as nps

from nums.models.glms import LogisticRegression

import nps

Phase 1 (reading data)

data = nums.read_csv("HIGGS.csv")

Phase 2 (splitting data)

y, X = data [: ,0]. astype(nps.int32), data [:,1:]

Phase 3 (fitting the model)

model = LogisticRegression(solver="newton -cg")

model.fit(X, y)

Phase 4 (prediction and accuracy)

y_pred = model.predict(X)

accuracy = (nps.sum(y == y_pred)/X.shape [0]). get()

Listing 1. Phase-breakdown of the LRHiggs benchmark.

Finding 8: Serverless NumS on Palette outperforms locality-
oblivious serverless NumS, and sometimes even outperforms
NumS on Ray. Figure 10a shows the mean runtime, 5%, and
95% confidence intervals for the three benchmarks running
NumS with Palette (Oblivious Random, Oblivious Round
Robin, and Least Assigned (LA)) and with Ray. From Fig-
ure 10a, we observe that LA outperforms Oblivious Random
by 27% in case of LRHiggs, 25% in case of MMM-2GB and 61%
in case of MMM-16GB. It also outperforms Oblivious Round
Robin in all the benchmarks, showing that minimizing load
on individual workers alone is not sufficient to achieve high
performance. Workloads involving potentially higher data
exchange between phases of computation benefit more from
Palette because it tries to schedule tasks where the data is.

When comparing between backends, Ray dominates both
Oblivious policies. However, with Palette’s locality API, FaaS
functions become competitivewith Ray. In fact, in the LRHiggs
benchmark, we show that Palette outperforms Ray by 41%.

In Figure 10b, we focus on the performance in individual
phases of the LRHiggs benchmark. While Ray is optimized
to load data for NumPy use (Phases 1 and 2), Palette outper-
forms Ray in the computation-heavy stages of the workload
by scheduling tasks closer to where their data is (Phases 3
and 4). Palette reduces the data copies in the overall system
by minimizing the number of unique workers that would
operate on a given data. This has two implications: (a) it

0

50

100

150

LRHiggs MMM−2GB MMM-16GB

R
un

 ti
m

e
[s

]

Oblivious: RRPalette: LA

(a) End-to-end performance.

0

25

50

75

100

Phase1 Phase2 Phase3 Phase4

R
un

 ti
m

e
[s

]

Oblivious: Random Ray

(b) LRHiggs breakdown.

Figure 10. Evaluation results with NumS.

enables running larger workloads using the same amount of
resources, and (b) it reduces the cost of running the work-
loads in a serverless setting where users are charged for
consumed resources (typically memory-seconds).

8 Related Work
Performance of serverless platforms and DAG frameworks
have sparked a rich literature. We review related ideas on
maintaining locality information, serverless caching, server-
less DAG engines, and DAG processing on serverless.
Locality Information. Perhaps the closest proposal to lo-
cality hints is an extended abstract by Schleier-Smith [71],
proposing to augment the serverless API with a “partition
key” for addressing FaaS ephemeral state. Our color abstrac-
tion is similar, except that it is a hint. To the best of our
knowledge, Palette is the first implementation and evalua-
tion of locality hints for serverless.
Outside of serverless frameworks, Kubernetes has a con-

cept of affinity tags [24] used at deployment time for placing
pods. Like Palette’s colors, these tags provide indirection,
separation of concerns, and enable several policies by ap-
plication owners. Web applications commonly use sticky
load balancing, in which all requests for a user session get
directed to the same instance. Palette’s colors provide the
first generic way to implement this stickiness for FaaS.
Archer et al. [9] improve the hit ratio of an in-memory

cache in Google’s web search backend, and increase the clus-
ter throughput, by making the load balancer route requests
to the replica with highest affinity to a query’s search terms.
They note that this approach is useful because the “replicas

Palette Load Balancing: Locality Hints for Serverless Functions EuroSys ’23, May 9–12, 2023, Rome, Italy

carry over mutable state between requests”. Colors are a
generic and flexible way of achieving this in a FaaS backend,
as we demonstrate in our social network example (§7.1).
Serverless Caching. Faa$T [70] colocates a cache with each
instance of a FaaS application. While Faa$T uses consistent
hashing to forward requests between caches, it does not
influence FaaS invocation routing. Thus, applications such as
Dask incur many remote hits with performance comparable
to an external in-memory KVS. Our implementation builds
on Faa$T and uses the Palette load balancer to outperform
oblivious Faa$T by 45% in Dask and NumS (§7.2).
OFC [59] implements a transparent and opportunistic

in-memory cache on top of OpenWhisk [62], using RAM-
Cloud [63] as the distributed cache. OFC implements a basic
form of execution locality: executions are placed where their
inputs are located. This policy works well only for linear
chains of functions. However, many queries have large fan-
outs (e.g., TPC-H queries 5, 7, 8, 10, and 12). For fan-outs,
OFC schedules all outgoing nodes on the same node, which
leads to poor performance as it does not allow parallelism. In
addition, OFC doesn’t specify how locality is implemented
in a general way, as it assumes that the source object can be
extracted from an invocation.

Infinicache [82] implements a distributed key-value cache
using serverless functions. Applications (serverless or not)
can access this cache over the network and achieve lower
costs compared to traditional key value caches such as Redis.
Infinicache is an orthogonal work to Palette and does not
discuss or provide functionality for locality.
Serverless Scheduling. Fuerst and Sharma [36] propose
a locality-aware load balancer for serverless clusters. They
look at the orthogonal problem of selecting to which servers
to send invocations of the same function, and propose an
improvement over OpenWhisk’s algorithm [62]. Concentrat-
ing these invocations in less servers reduces the number of
cold starts. They do not, however, consider the locality w.r.t.
the data accessed by these invocations. Given a set of servers
with warm instances of a function, Palette’s locality hints
can be used to improve data locality.
Serverless DAG Engines. There are many options, with
different tradeoffs, to execute DAGs on serverless functions.
One can use existing serverless frameworks and rely on

an external cache like Redis (e.g., gg short-lived [34]). This
leads to poor performance, comparable to Oblivious (§7).
Replacing serverless frameworks with containers (such as
AWS Fargate) enables existing DAG frameworks to run. An-
other alternative is to use serverless functions as containers
by setting up long-lived functions with reverse connections
to a central controller [34, 73, 86]. Both container variants
require provisioning servers and break serverless’ simplicity.

Cloudburst [78], HaSTe [84], SONIC [56], SAND [3], Faast-
lane [53], and Ray [67] all implement DAG execution engines.
By sending the whole DAG (instead of individual function

calls), this programming model provides a wealth of infor-
mation to the FaaS scheduler. The scheduler has complete
information about the workers, including the load and con-
tents of the caches, and can place functions where most of
their input data is cached. SONIC selects how to best transfer
data among stages of a DAG, and does data-aware function
placement, based on its knowledge of the DAG. Palette ex-
plores a different point in the trade-off space between inter-
face complexity and performance, and shows that we can
achieve performance very close to schedulers with complete
information, while still maintaining a simple and general
interface.
Wukong [20] implements a serverless backend for Dask

by running DAG nodes as serverless functions, and storing
intermediate data in a key-value store (KVS), which has to be
provisioned andmaintained separately.Wukongmodifies the
Dask scheduler to find chains of tasks that can be executed
on the same node, and sends these sections of the graph to
the same function instance. Wukong achieves locality by fus-
ing functions, and avoids serialization and deserialization for
functions in the same instance. Instances coordinate through
the KVS when there are fan-ins and fan-outs in the DAG.
Wukong also removes the scheduler from the critical path
by having functions schedule each other, at the expense of
complexity in the functions’ implementations. With locality
hints and a serverless cache, one can achieve similar perfor-
mance to Wukong for DAG computations, without having
to maintain a separate KVS; by using the virtual servers ap-
proach (cf. §6.2) Palette also requires little modification to
existing frameworks.
Parallel Task Scheduling. The extensive literature on
scheduling parallel tasks and DAGs is documented in excel-
lent surveys [75]. Palette enables PaaS users to implement
advanced scheduling algorithms with ease.

9 Conclusion
Palette addresses the performance gap of serverless plat-
forms for data-intensive applications by introducing colors
as locality hints. This approach allows users to leverage the
benefits of serverless systems while allowing the platform
to place successive invocations related to each other in the
same executing node. Our prototype evaluation shows that
Palette closes the gap for web applications with near-perfect
scaling of cache hit ratios and mostly closes the gap for data
analytics like Dask and NumS.

10 Acknowledgments
We would like to thank Orran Krieger, Peter Desnoyers, Ben-
jamin Carver, and Yue Cheng for the invaluable discussions
and suggestions; the anonymous Eurosys reviewers and our
shepherd Dilma da Silva for the thoughtful comments and
feedback; and Melih Elibol for the help with NumS.

EuroSys ’23, May 9–12, 2023, Rome, Italy Abdi et al.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, AndyDavis, Jeffrey Dean,Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems, 2015. Software available from tensorflow.org.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight virtualization for serverless applications. InNSDI,
2020.

[3] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards
High-Performance serverless computing. In ATC’18, pages 923–935,
Boston, MA, July 2018. USENIX Association.

[4] Alibaba. Function compute. https://www.alibabacloud.com/product/
function-compute. Accessed on September 23𝑟𝑑 , 2022.

[5] Mehmet Altınel, Christof Bornhövd, Sailesh Krishnamurthy, Chan-
drasekaran Mohan, Hamid Pirahesh, and Berthold Reinwald. Cache
tables: Paving the way for an adaptive database cache. In VLDB, 2003.

[6] Amazon. Aws lambda features. https://aws.amazon.com/lambda/
features/. Accessed on September 23𝑟𝑑 , 2022.

[7] Amazon. AWS Step Functions. https://aws.amazon.com/step-
functions/. Accessed on September 23𝑟𝑑 , 2022.

[8] Amazon. Best practices for working with AWS Lambda functions -
AWS Lambda. https://docs.aws.amazon.com/lambda/latest/dg/best-
practices.html. Accessed on September 23𝑟𝑑 , 2022.

[9] Aaron Archer, Kevin Aydin, Mohammad Hossein Bateni, Vahab Mir-
rokni, Aaron Schild, Ray Yang, and Richard Zhuang. Cache-aware
load balancing of data center applications. Proc. VLDB Endow.,
12(6):709–723, feb 2019.

[10] Microsoft Azure. Azure durable functions. https://docs.microsoft.com/
en-us/azure/azure-functions/durable/durable-functions-overview.
Accessed on September 23𝑟𝑑 , 2022.

[11] Microsoft Azure. Azure functions host. https://github.com/Azure/
azure-functions-host. Accessed on September 23𝑟𝑑 , 2022.

[12] Microsoft Azure. Azure Functions Python developer guide.
https://docs.microsoft.com/en-us/azure/azure-functions/functions-
reference-python. Accessed on September 23𝑟𝑑 , 2022.

[13] Microsoft Azure. Azure functions triggers and bindings con-
cepts. https://docs.microsoft.com/en-us/azure/azure-functions/
functions-triggers-bindings?tabs=python. Accessed on September
23𝑟𝑑 , 2022.

[14] Microsoft Azure. Best practices for reliable azure functions.
https://docs.microsoft.com/en-us/azure/azure-functions/functions-
best-practices?tabs=python. Accessed on September 23𝑟𝑑 , 2022.

[15] Microsoft Azure. Introduction to Azure Functions. https://docs.
microsoft.com/en-us/azure/azure-functions/functions-overview. Ac-
cessed on September 23𝑟𝑑 , 2022.

[16] Daniel Barcelona-Pons, Pierre Sutra, Marc Sánchez-Artigas, Gerard
París, and Pedro García-López. Stateful serverless computing with
crucial. ACM Trans. Softw. Eng. Methodol., 31(3), mar 2022.

[17] Benjamin Berg, Daniel S Berger, Sara McAllister, Isaac Grosof, Sathya
Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann,
Mor Harchol-Balter, et al. The CacheLib Caching Engine: Design and
Experiences at Scale. In OSDI’20, pages 753–768, 2020.

[18] Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and
Mor Harchol-Balter. Robinhood: Tail latency aware caching–dynamic
reallocation from cache-rich to cache-poor. In OSDI, 2018.

[19] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose,
and Rares Vernica. Hyracks: A flexible and extensible foundation for
data-intensive computing. ICDE, 2011.

[20] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu,
and Yue Cheng. Wukong: A scalable and locality-enhanced framework
for serverless parallel computing. In SoCC, 2020.

[21] CloudFlare. Cloudflare FaaS. https://www.cloudflare.com/learning/
serverless/glossary/function-as-a-service-faas/. Accessed on Septem-
ber 23𝑟𝑑 , 2022.

[22] Dask. Dask: Scalable analytics in Python. https://docs.dask.org/en/
latest/. Accessed on September 23𝑟𝑑 , 2022.

[23] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. ACM SIGOPS operating systems review,
41(6):205–220, 2007.

[24] Kubernetes Documentation. Inter-pod affinity and anti-affinity.
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-
pod-node/#inter-pod-affinity-and-anti-affinity. Accessed on
September 23𝑟𝑑 , 2022.

[25] Jesse Donkervliet, Animesh Trivedi, and Alexandru Iosup. Towards
supporting millions of users in modifiable virtual environments by re-
designing Minecraft-Like games as serverless systems. In 12th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 20). USENIX
Association, July 2020.

[26] Dheeru Dua and Casey Graff. UCI machine learning repository. http:
//archive.ics.uci.edu/ml, 2017. Accessed on September 23𝑟𝑑 , 2022.

[27] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gustavo Alonso.
Photons: Lambdas on a diet. In SoCC, 2020.

[28] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru
Iosup. A Review of Serverless Use Cases and their Characteristics.
arXiv:2008.11110 [cs], January 2021. arXiv: 2008.11110.

[29] Melih Elibol, Vinamra Benara, Samyu Yagati, Lianmin Zheng, Alvin
Cheung, Michael I. Jordan, and Ion Stoica. NumS: Scalable Array
Programming for the Cloud, 2022. arXiv:2206:14276 [cs].

[30] Facebook. Network repository. https://networkrepository.com//. Ac-
cessed on September 23𝑟𝑑 , 2022.

[31] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier.
HyperLogLog: the analysis of a near-optimal cardinality estimation
algorithm. In Philippe Jacquet, editor, AofA: Analysis of Algorithms,
volume DMTCS Proceedings vol. AH, 2007 Conference on Analysis
of Algorithms (AofA 07) of DMTCS Proceedings, pages 137–156, Juan
les Pins, France, June 2007. Discrete Mathematics and Theoretical
Computer Science.

[32] Fn. Fn project. https://fnproject.io/. Accessed on September 23𝑟𝑑 ,
2022.

[33] Sadjad Fouladi, Kayvon Fatahalian Hanrahan, and Keith Winstein.
R2e2: Low-latency path tracing of terabyte-scale scenes using thou-
sands of cloud cpus. In SIGGRAPH, 2022.

[34] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. From lap-
top to lambda: Outsourcing everyday jobs to thousands of transient
functional containers. In ATC, 2019.

[35] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. Encoding, Fast and Slow: Low-
Latency Video Processing Using Thousands of Tiny Threads. In NSDI,
2017.

[36] Alexander Fuerst and Prateek Sharma. Locality-aware Load-Balancing
For Serverless Clusters. In HPDC, Minneapolis, MN, 2022.

[37] Delbert Ray Fulkerson. Note on Dilworth’s decomposition theorem
for partially ordered sets. Proceedings of the American Mathematical
Society, 7(4):701–702, 1956.

https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://aws.amazon.com/lambda/features/
https://aws.amazon.com/lambda/features/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://github.com/Azure/azure-functions-host
https://github.com/Azure/azure-functions-host
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-python
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-python
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings?tabs=python
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings?tabs=python
https://docs.microsoft.com/en-us/azure/azure-functions/functions-best-practices?tabs=python
https://docs.microsoft.com/en-us/azure/azure-functions/functions-best-practices?tabs=python
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://www.cloudflare.com/learning/serverless/glossary/function-as-a-service-faas/
https://www.cloudflare.com/learning/serverless/glossary/function-as-a-service-faas/
https://docs.dask.org/en/latest/
https://docs.dask.org/en/latest/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://networkrepository.com//
https://fnproject.io/

Palette Load Balancing: Locality Hints for Serverless Functions EuroSys ’23, May 9–12, 2023, Rome, Italy

[38] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In
ASPLOS, 2019.

[39] Pedro García-López, Aleksander Slominski, Simon Shillaker, Michael
Behrendt, and Barnard Metzler. Serverless end game: Disaggregation
enabling transparency. arXiv:2006.01251 [cs], 2020.

[40] Charles Garrod, Amit Manjhi, Anastasia Ailamaki, Bruce Maggs, Todd
Mowry, Christopher Olston, and Anthony Tomasic. Scalable Query
Result Caching for Web Applications. VLDB, 1(1):550–561, 2008.

[41] R. L. Graham. Bounds for certain multiprocessing anomalies. The Bell
System Technical Journal, 45(9):1563–1581, 1966.

[42] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu.
Serverless computing: One step forward, two steps back. In CIDR,
2019.

[43] Ibm cloud functions. https://cloud.ibm.com/functions/. Accessed on
September 23𝑟𝑑 , 2022.

[44] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks. SIGOPS Oper. Syst. Rev., 41(3), 2007.

[45] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. For-
mal foundations of serverless computing. In OOPSLA, 2019.

[46] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso,
Ana Klimovic, Ankit Singla, Wentao Wu, and Ce Zhang. Towards
demystifying serverless machine learning training. In Proceedings of
the 2021 International Conference onManagement of Data, page 857–871,
New York, NY, USA, 2021. Association for Computing Machinery.

[47] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. Occupy the cloud: Distributed computing for the 99In
Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17,
page 445–451, New York, NY, USA, 2017. Association for Computing
Machinery.

[48] Chanwit Kaewkasi. Docker for Serverless Applications: Containerize
and orchestrate functions using OpenFaas, OpenWhisk, and Fn. Packt
Publishing Ltd, 2018.

[49] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world
wide web. In Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, page 654–663, New York, NY, USA,
1997. Association for Computing Machinery.

[50] Nima Kaviani, Dmitriy Kalinin, and Michael Maximilien. Towards
Serverless as Commodity: A Case of Knative. InWoSC, 2019.

[51] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and
Ion Stoica. Jiffy: Elastic far-memory for stateful serverless analytics. In
Proceedings of the Seventeenth European Conference on Computer Sys-
tems, EuroSys ’22, page 697–713, New York, NY, USA, 2022. Association
for Computing Machinery.

[52] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage
for serverless analytics. In OSDI, 2018.

[53] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu.
Faastlane: Accelerating Function-as-a-Service workflows. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), pages 805–820.
USENIX Association, July 2021.

[54] Kubernetes. Production-grade container orchestration. https://
kubernetes.io/. Accessed on September 23𝑟𝑑 , 2022.

[55] Qiong Luo, Sailesh Krishnamurthy, CMohan, Hamid Pirahesh, Honguk
Woo, Bruce G Lindsay, and Jeffrey F Naughton. Middle-tier database
caching for e-business. In SIGMOD, 2002.

[56] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic,
Somali Chaterji, and Saurabh Bagchi. SONIC: Application-aware
data passing for chained serverless applications. In 2021 USENIX

Annual Technical Conference (USENIX ATC 21), pages 285–301. USENIX
Association, July 2021.

[57] Vahab Mirrokni, Mikkel Thorup, and Morteza Zadimoghaddam. Con-
sistent Hashing with Bounded Loads. In SODA, 2018.

[58] Ingo Müller, Renato Marroquín, and Gustavo Alonso. Lambada: Inter-
active data analytics on cold data using serverless cloud infrastructure.
In SIGMOD, 2020.

[59] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim
Wood, Daniel Hagimont, et al. OFC: an opportunistic caching system
for FaaS platforms. In EuroSys, 2021.

[60] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, et al. Scaling memcache at facebook. In NSDI, 2013.

[61] OpenFaaS. Openfaas. https://www.openfaas.com/. Accessed on Sep-
tember 23𝑟𝑑 , 2022.

[62] Apache OpenWhisk. Apache openwhisk. https://openwhisk.apache.
org/. Accessed on September 23𝑟𝑑 , 2022.

[63] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, BehnamMontazeri, Diego Ongaro, Seo Jin Park, Henry Qin,
Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen
Yang. The ramcloud storage system. ACM Trans. Comput. Syst., 33(3),
aug 2015.

[64] Google Cloud Platform. Cloud functions. https://cloud.google.com/
functions/. Accessed on September 23𝑟𝑑 , 2022.

[65] Python. concurrent.futures – launching parallel tasks. https://docs.
python.org/3.8/library/concurrent.futures.html. Accessed on Septem-
ber 23𝑟𝑑 , 2022.

[66] Martin Raab and Angelika Steger. “Balls into bins” – a simple and
tight analysis. In International Workshop on Randomization and Ap-
proximation Techniques in Computer Science, pages 159–170. Springer,
1998.

[67] Ray. Scaling Python made simple, for any workload. https://github.
com/ray-project/ray. Accessed on September 23𝑟𝑑 , 2022.

[68] Introduction to Redis. https://redis.io/docs/about/. Accessed on Sep-
tember 23𝑟𝑑 , 2022.

[69] Redis cluster specification. https://redis.io/docs/reference/cluster-
spec/. Accessed on September 23𝑟𝑑 , 2022.

[70] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna
Gopa, Paul Batum, Neeraja J Yadwadkar, Rodrigo Fonseca, Christos
Kozyrakis, and Ricardo Bianchini. Faa$T: A Transparent Auto-Scaling
Cache for Serverless Applications. In SoCC, 2021.

[71] Johann Schleier-Smith. Serverless Foundations for Elastic Database
Systems. In CIDR Extended Abstract, 2019.

[72] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the Wild: Charac-
terizing and Optimizing the Serverless Workload at a Large Cloud
Provider. In ATC, 2020.

[73] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin
Recht, Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram
Venkataraman. Serverless Linear Algebra. In SoCC, 2020.

[74] Klaus Simon. An Improved Algorithm for Transitive Closure on
Acyclic Digraphs. Theoretical Computer Science, 58(1), 1988.

[75] Khushboo Singh, Mahfooz Alam, and Sushil Kumar Sharma. A sur-
vey of static scheduling algorithm for distributed computing system.
International Journal of Computer Applications, 129(2):25–30, 2015.

[76] Arjun Singhvi, Kevin Houck, Arjun Balasubramanian, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. Archipelago: A scalable low-latency serverless platform.
CoRR, abs/1911.09849, 2019.

[77] Elliott Slaughter, Wei Wu, Yuankun Fu, Legend Brandenburg, Nicolai
Garcia, Wilhem Kautz, Emily Marx, Kaleb S. Morris, Qinglei Cao,
George Bosilca, Seema Mirchandaney, Wonchan Lee, Sean Treichler,

https://cloud.ibm.com/functions/
https://kubernetes.io/
https://kubernetes.io/
https://www.openfaas.com/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://docs.python.org/3.8/library/concurrent.futures.html
https://docs.python.org/3.8/library/concurrent.futures.html
https://github.com/ray-project/ray
https://github.com/ray-project/ray
https://redis.io/docs/about/
https://redis.io/docs/reference/cluster-spec/
https://redis.io/docs/reference/cluster-spec/

EuroSys ’23, May 9–12, 2023, Rome, Italy Abdi et al.

Patrick McCormick, and Alex Aiken. Task Bench: A Parameterized
Benchmark for Evaluating Parallel Runtime Performance. In SC, 2020.

[78] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Jose M Faleiro, Joseph E Gonzalez, Joseph M Heller-
stein, and Alexey Tumanov. Cloudburst: Stateful Functions-as-a-
Service. In PVLDB, 2020.

[79] Mark Freeman Tompkins. Optimization techniques for task allocation
and scheduling in distributed multi-agent operations, 2003. Master’s
Thesis.

[80] TPC-H. TPC-H Version 3. http://www.tpc.org/tpch/. Accessed on
September 23𝑟𝑑 , 2022.

[81] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. Benchmarking, analysis, and optimization of serverless
function snapshots. In ASPLOS, 2021.

[82] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. In-
finicache: Exploiting ephemeral serverless functions to build a cost-
effective memory cache. In FAST, 2020.

[83] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the curtains of serverless platforms. In
ATC, 2018.

[84] Yi Yao, Jiayin Wang, Bo Sheng, Jason Lin, and Ningfang Mi. Haste:
Hadoop yarn scheduling based on task-dependency and resource-
demand. In SoCC, 2014.

[85] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. Apache Spark: A unified engine for big
data processing. Commun. ACM, 59(11):56–65, oct 2016.

[86] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. Kappa: A
programming framework for serverless computing. In SoCC, 2020.

[87] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. Faster
and cheaper serverless computing on harvested resources. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 724–739, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

http://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Use Cases
	4 Palette: Serverless Locality
	5 Implementation
	5.1 Integration with the Faa$T Serverless Cache

	6 Application Coloring Policies
	6.1 Social Network
	6.2 DAG Computations
	6.3 Discussion

	7 Evaluation
	7.1 Web Application
	7.2 Data Analytics

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

