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Video cameras are pervasive
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Video analytics queries
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Intelligent Traffic System AMBER Alert

Electronic Toll Collection
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Video Doorbell



Video query: a pipeline of transforms

transform
count object

transform
track object

transform
decode

transform
detect object
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• Vision algorithms chained together
• Example: traffic counter pipeline



Video queries are expensive in resource usage

transform
count object

transform
track object

transform
decode

transform
b/g subtract
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• Best car tracker [1] — 1 fps on an 8-core CPU
• DNN for object classification [2] — 30GFlops

[1] VOT Challenge 2015 Results.
[2] Simonyan et al. CVPR abs/1409.1556, 2014

• When processing thousands of video streams in multi-tenant clusters
• How to reduce processing cost of a query?
• How to manage resources efficiently across queries?



Vision algorithms are intrinsically approximate

• License plate reader → window size
• Car tracker → mapping metric
• Object classifier → DNN model

• Query configuration: a combination of knob values

Frame Rate Resolution Window Size Mapping Metric

6

• Knobs: parameters / implementation choices for transforms



Knobs impact quality and resource usage

Frame Rate Resolution

720p3

1 480p
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Quality=0.93, CPU=0.54

Quality=0.57, CPU=0.09



Knobs impact quality and resource usage

Frame Rate Resolution Window Size Mapping Metric
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Knobs impact quality and resource usage

• Orders of magnitude cheaper resource demand for little quality drop

• No analytical models to predict resource-quality tradeoff
• Different from approximate SQL queries
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Diverse quality and lag requirements

Quality?

Lag?

High

Hours

Moderate

Few Seconds

High

Few Seconds
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Intelligent Traffic AMBER AlertToll Collection

Lag: time difference between frame arrival and frame processing



11

Decide configuration and resource allocation to 
maximize quality and minimize lag

within the resource capacity

Configuration  . Quality

LagResource Allocation  .

Goal



Video analytics framework: Challenges
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1. Many knobs → large configuration space
• No known analytical models to predict quality and resource impact

2. Diverse requirements on quality and lag
• Hard to configure and allocate resources jointly across queries

Configuration  . Quality

LagResource Allocation  .



VideoStorm: Solution Overview

Profiler
query Schedulerresource-quality

profile

utility function

offline online
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Workers



VideoStorm: Solution Overview

Profiler
query Schedulerresource-quality

profile

utility function

offline online
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Workers
Builds model

Reduces config
space

Trades off 
quality and lag 
across queries



VideoStorm: Solution Overview

Profiler
query Schedulerresource-quality

profile

offline online
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Workers



Offline: query profiling

• Profile: configuration ⟹ resource, quality
• Ground-truth: labeled dataset or results from golden configuration
• Explore configuration space, compute average resource and quality
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Offline: Pareto boundary of configuration space

• Pareto boundary: optimal configurations in resource efficiency and quality
• Cannot further increase one without reducing the other
• Orders of magnitude reduction in config. search space for scheduling
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VideoStorm: Solution Overview

Profiler

Schedulerresource-quality
profile

utility function

offline online
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Workers



Online: utility function and scheduling

• Utility function: encode goals and sensitivities of quality and lag
• Users set required quality and tolerable lag
• Reward additional quality, penalize higher lag

• Schedule for two natural goals:
• Maximize the minimum utility – (max-min) fairness
• Maximize the total utility – overall performance

• Allow lag accumulation during resource shortage, then catch up
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higher quality

higher lag



Online: scheduling approximate video queries

• Queries: blue and orange 
(tolerate 8s lag)

• Total CPU: 4 → 2 → 4
• Fair scheduler: best 

configurations w/o lag

Fair Quality-aware

• Quality-aware scheduler: 
allow lag → catch up

1 2 3
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Additional Enhancements

• Handle incorrect resource profiles
• Profiled resource demand might not correspond to actual queries
• Robust to errors in query profiles

• Query placement and migration
• Better utilization, load balancing and lag spreading

• Hierarchical scheduling
• Cluster and machine level scheduling
• Better efficiency and scalability
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VideoStorm Evaluation Setup

VideoStorm Manager
Profiler + Scheduler
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100 Worker Machines

• Platform:
• Microsoft Azure cluster
• Each worker contains 4 cores 

of the 2.4GHz Intel Xeon 
processor and 14GB RAM

• Four types of vision queries:
• license plate reader
• car counter
• DNN classifier
• object tracker



Experiment Video Datasets

• Operational traffic cameras in Bellevue and Seattle 

• 14 – 30 frames per second, 240P – 1080P resolution
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Resource allocation during burst of queries

• Start with 300 queries:
① Lag Goal=300s, low-quality ~60%
② Lag Goal=20s, low-quality ~40%

• Burst of 150 seconds (50 – 200):
③ 200 LPR queries (AMBER Alert)
High-Quality, Lag Goal=20s

• VideoStorm scheduler:
③ dominate resource allocation
significantly delay ①
run ② with lower quality
All meet quality and lag goals
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Resource allocation during burst of queries

• Start with 300 queries:
① Lag Goal=300s, low-quality ~60%
② Lag Goal=20s, low-quality ~40%

• Burst of 150 seconds (50 – 200):
③ 200 LPR queries (AMBER Alert)
High-Quality, Lag Goal=20s

• VideoStorm scheduler:
significantly delay ①
run ② with lower quality
③ dominate resource allocation
All meet quality and lag goals
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• Compare to a fair scheduler with varying burst duration:
• Quality improvement: up to 80%
• Lag reduction: up to 7x



VideoStorm Scalability

• Frequently reschedule and reconfigure in reaction to changes of queries

• Even with thousands of queries, VideoStorm makes rescheduling 
decisions in just a few seconds
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VideoStorm: account for errors in query profiles

• Errors in profile on resource demands
• Over/under allocate resources →	miss quality and lag goals!

• Example: 3 copies of same query, should get same allocation
• Profiled resource synthetically doubled, halved and unchanged

• VideoStorm keeps track of mis-estimation factor 𝜇 – multiplicative error 
between the profiled demand and actual usage
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Conclusion

• VideoStorm is a video analytics system that scales to processing 
thousands of video streams in large clusters

• Offline profiler: efficiently estimates resource-quality profiles
• Online scheduler: optimizes jointly for the quality and lag of queries

• VideoStorm is currently deployed in Bellevue Traffic Department, and 
soon will be deployed in more cities
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