
NetChain: Scale-Free Sub-RTT 
Coordination

Xin Jin
Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,

Nate Foster, Changhoon Kim, Ion Stoica



1

Conventional wisdom: avoid coordination

NetChain: lightning fast coordination
enabled by programmable switches

Open the door to rethink distributed systems design



2

Applications

Coordination services: fundamental
building block of the cloud

Coordination
Service Chubby



3

Configuration
Management

Distributed
Locking

Group
Membership Barrier

Applications

Coordination
Service

Provide critical coordination functionalities



4

Configuration
Management

Distributed
Locking

Group
Membership Barrier

Applications

Coordination
Service

Servers

Strongly-Consistent, Fault-Tolerant Key-Value Store

The core is a strongly-consistent,
fault-tolerant key-value store

This Talk



5

client
coordination servers

running a consensus protocol

request

reply

Workflow of coordination services

Can we do better?

Ø Throughput: at most server NIC throughput
Ø Latency: at least one RTT, typically a few RTTs



6

client
coordination servers

running a consensus protocol

request

reply

Opportunity: in-network coordination

Server Switch
Example [NetBricks, OSDI’16] Barefoot Tofino
Packets per second 30 million A few billion
Bandwidth 10-100 Gbps 6.5 Tbps
Processing delay 10-100 us < 1 us

Distributed coordination is
communication-heavy,
not computation-heavy.



7

client
coordination switches

running a consensus protocol

request

reply

Opportunity: in-network coordination

Ø Throughput: switch throughput
Ø Latency: half of an RTT



Design goals for coordination services

Ø High throughput

Ø Low latency

Ø Strong consistency

Ø Fault tolerance

8

Directly from
high-performance switches

How?



Design goals for coordination services

Ø High throughput

Ø Low latency

Ø Strong consistency

Ø Fault tolerance

9

Directly from
high-performance switches

Chain replication in the network



What is chain replication

10

S0 S1 S2

Head Replica Tail

Read
Request

Read
Reply

Ø Storage nodes are organized in a chain structure
Ø Handle operations

Ø Read from the tail



What is chain replication

Ø Storage nodes are organized in a chain structure
Ø Handle operations

Ø Read from the tail
Ø Write from head to tail

Ø Provide strong consistency and fault tolerance
Ø Tolerate f failures with f+1 nodes

11

S0 S1 S2

Head Replica Tail

Write
Request

Read
Request

Read/Write
Reply



Division of labor in chain replication:
a perfect match to network architecture

12

• Optimize for high-performance to 
handle read & write requests

• Provide strong consistency

Storage Nodes

• Handle less frequent reconfiguration
• Provide fault tolerance

Auxiliary Master

• Handle packets at line rate

Network Data Plane

• Handle network reconfiguration

Network Control Plane

Chain
Replication

Network
Architecture



NetChain

NetChain overview

13

Host
Racks

S2 S3 S4 S5

S0 S1 Network
Controller

Handle reconfigurations
(e.g., switch failures)

Handle read & write requests
at line rate



How to build a strongly-consistent,
fault-tolerant, in-network key-value store

Ø How to store and serve key-value items?

Ø How to route queries according to chain structure?

Ø How to handle out-of-order delivery in network?

Ø How to handle switch failures?

14

Data
Plane

Control
Plane



PISA: Protocol Independent Switch Architecture

Ø Programmable Parser
Ø Convert packet data into metadata

Ø Programmable Mach-Action Pipeline
Ø Operate on metadata and update memory state 

15

Match + Action 

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……



PISA: Protocol Independent Switch Architecture

Ø Programmable Parser
Ø Parse custom key-value fields in the packet

Ø Programmable Mach-Action Pipeline
Ø Read and update key-value data at line rate 

16

Match + Action 

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……



17

Match + Action 

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……

Data plane (ASIC)

Control plane (CPU)

Network
Functions

Network
Management

Run-time API

P
C

Ie

NetChain
Switch Agent

Key-Value
Store

NetChain
Controller



How to build a strongly-consistent,
fault-tolerant, in-network key-value store

Ø How to store and serve key-value items?

Ø How to route queries according to chain structure?

Ø How to handle out-of-order delivery in network?

Ø How to handle switch failures?

18

Data
Plane

Control
Plane



NetChain packet format

Ø Application-layer protocol: compatible with existing L2-L4 layers

Ø Invoke NetChain with a reserved UDP port

19

ETH IP UDP OP KEY VALUES0 SEQS1 … Sk

NetChain routingL2/L3 routing inserted by head switchread, write, delete, etc.
reserved port #

SC

Existing Protocols NetChain Protocol



In-network key-value storage

Ø Key-value store in a single switch
Ø Store and serve key-value items using register arrays [SOSP’17, NetCache]

Ø Key-value store in the network
Ø Data partitioning with consistent hashing and virtual nodes

20

Match Action
Key = X Read/Write RA[0]
Key = Y Read/Write RA[5]
Key = Z Read/Write RA[2]
Default Drop()

Register Array (RA)Match-Action Table

0
1
2
3
4
5



How to build a strongly-consistent,
fault-tolerant, in-network key-value store

Ø How to store and serve key-value items?

Ø How to route queries according to chain structure?

Ø How to handle out-of-order delivery in network?

Ø How to handle switch failures?

21

Data
Plane

Control
Plane



NetChain routing: segment routing 
according to chain structure

22

S0 S1 S2

Head Replica Tail

Write Request Write Reply
H0

Client
… dstIP

= S0
… SC

= 2 S1 S2 …

… dstIP
= S1

… SC
= 1 S2 … … dstIP

= S2
… SC

= 0 …

… dstIP
= H0

… SC
= 0 …



NetChain routing: segment routing 
according to chain structure

23

S0 S1 S2

Head Replica Tail

Read Reply

H0

Client
Read Request

… dstIP
= S2

… SC
= 2 S1 S0 …

… dstIP
= H0

… SC
= 2 S1 S0 …



How to build a strongly-consistent,
fault-tolerant, in-network key-value store

Ø How to store and serve key-value items?

Ø How to route queries according to chain structure?

Ø How to handle out-of-order delivery in network?

Ø How to handle switch failures?

24

Data
Plane

Control
Plane



Problem of out-of-order delivery

25

S0 S1 S2

Head Replica Tail

time

foo=B
foo=C foo=C

foo=B foo=B
foo=C

foo=A foo=A foo=A

W1: foo=B
W2: foo=C

Concurrent Writes

Inconsistent values between three replicasSerialization with sequence number



How to build a strongly-consistent,
fault-tolerant, in-network key-value store

Ø How to store and serve key-value items?

Ø How to route queries according to chain structure?

Ø How to handle out-of-order delivery in network?

Ø How to handle switch failures?

26

Data
Plane

Control
Plane



Handle a switch failure

27

S0 S1 S2

Fast Failover Failure Recovery

S0 S3 S2S0 S2

Ø Failover to remaining f nodes
Ø Tolerate f-1 failures
Ø Efficiency: only need to update 

neighbor switches of failed switch

Ø Add another switch
Ø Tolerate f+1 failures again
Ø Consistency: two-phase atomic 

switching
Ø Minimize disruption: virtual groups

Before failure: tolerate f failures with f+1 nodes



Protocol correctness

28

Invariant. For any key k that is assigned to a chain of 
nodes [S1, S2, …, Sn], if 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (i.e., Si is a 
predecessor of Sj), then 𝑆𝑡𝑎𝑡𝑒+, 𝑘 . 𝑠𝑒𝑞 ≥ 𝑆𝑡𝑎𝑡𝑒+2 𝑘 . 𝑠𝑒𝑞.

Ø Guarantee strong consistency under packet loss, 
packet reordering, and switch failures

Ø See paper for TLA+ specification



Implementation
Ø Testbed

Ø 4 Barefoot Tofino switches and 4 commodity servers
Ø Switch

Ø P4 program on 6.5 Tbps Barefoot Tofino
Ø Routing: basic L2/L3 routing
Ø Key-value store: up to 100K items, up to 128-byte values

Ø Server
Ø 16-core Intel Xeon E5-2630, 128 GB memory, 25/40 Gbps Intel NICs
Ø Intel DPDK to generate query traffic: up to 20.5 MQPS per server

29



Evaluation
Ø Can NetChain provide significant performance improvements?

Ø Can NetChain scale out to a large number of switches?

Ø Can NetChain efficiently handle failures? 

Ø Can NetChain benefit applications?

30



Evaluation
Ø Can NetChain provide significant performance improvements?

Ø Can NetChain scale out to a large number of switches?

Ø Can NetChain efficiently handle failures? 

Ø Can NetChain benefit applications?

31



Orders of magnitude higher throughput

32

0 32 64 96 128
9alue 6ize (Byte)

10-2

10-1

100

101

102

103

104

TK
ro

ug
KS

ut
 (0

4
3

6
)

1etCKaiQ(Pax) 1etCKaiQ(4) ZooKeeSer

0 20K 40K 60K 80K 100K
6tore 6ize

10-2

10-1

100

101

102

103

104

TK
ro

ug
KS

ut
 (0

4
3

6
)

1etCKaiQ(Pax) 1etCKaiQ(4) ZooKeeSer

82 MQPS

2000 MQPS

0.15 MQPS

82 MQPS

2000 MQPS

0.15 MQPS



Orders of magnitude lower latency

33

(a) Throughput vs. value size. (b) Throughput vs. store size. (c) Throughput vs. write ratio.

(d) Throughput vs. loss rate.

10-3 10-2 10-1 100 101 102 103 104

TKrougKSut (043S)

100

101

102

103

104

/a
te

Qc
y 

(µ
s)

ZooKeeSer (ZrLte)
ZooKeeSer (read)
1etCKaLQ (read/ZrLte)

(e) Latency vs. throughput. (f) Scalability (simulation).

Figure 9: Performance results. (a-e) shows the experimental results of a three-switch NetChain prototype. Netchain(1),
Netchain(2), Netchain(3) and Netchain(4) correspond to measuring the prototype performance with one, two, three
and four servers respectively. NetChain(max) is the theoretical maximum throughput achievable by a three-switch
chain; it is not a measured throughput. (f) shows the simulation results of spine-leaf networks of various sizes.

four server machines. Each server machine is equipped
with a 16-core CPU (Intel Xeon E5-2630) and 128 GB
total memory (four Samsung 32GB DDR4-2133 mem-
ory). Three server machines are equipped with 40G NICs
(Intel XL710) and the other one is equipped with a 25G
NIC (Intel XXV710). The testbed is organized in a topol-
ogy as shown in Figure 8.

Comparison. We compare NetChain to Apache
ZooKeeper-3.5.2 [33]. We implement a client to mea-
sure ZooKeeper’s performance with Apache Curator-
4.0.0 [34], which is a popular client library for
ZooKeeper. The comparison is slightly unfair: NetChain
does not provide all features of ZooKeeper (§6), and
ZooKeeper is a production-quality system that compro-
mises its performance for many software-engineering
objectives. But at a high level, the comparison uses
ZooKeeper as a reference for server-based solutions to
demonstrate the performance advantages of NetChain.

8.1 Throughput
We first evaluate the throughput of NetChain. We use
three switches to form a chain [S0,S1,S2], where S0 is
the head and S2 is the tail. Each server can send and re-
ceive queries at up to 20.5 MQPS. We use NetChain(1),
NetChain(2), NetChain(3), NetChain(4) to denote the
measured throughput by using one, two, three and four
servers, respectively. We use Tofino switches in a mode
that guarantees up to 4 BQPS throughput and each query

packet is processed twice by a switch (e.g., a query from
H0 follows path H0-S0-S1-S2-S1-S0-H0). Therefore, the
maximum throughput of the chain is 2 BQPS in this
setup. As the four servers cannot saturate the chain, we
use NetChain(max) to denote the maximum throughput
of the chain (shown as dotted lines in figures). For com-
parison, we run ZooKeeper on three servers, and a sepa-
rate 100 client processes on the other server to generate
queries. This experiment aims to thoroughly evaluate the
throughput of one switch chain under various setups with
real hardware switches. For large-scale deployments, a
packet may traverse multiple hops to get from one chain
switch to the next, and we evaluate the throughput with
simulations in §8.3. Figure 9(a-d) shows the through-
puts of the two systems. The default setting uses 64-
byte value size, 20K store size (i.e., the number of key-
value items), 1% write ratio, and 0% link loss rate. We
change one parameter in each experiment to show how
the throughputs are affected by these parameters.

Figure 9(a) shows the impact of value size. NetChain
provides orders of magnitude higher throughput than
ZooKeeper and both systems are not affected by the
value size in the evaluated range. NetChain(4) keeps
at 82 MQPS, meaning that NetChain can fully serve all
the queries generated by the four servers. This is due
to the nature of a switch ASIC: as long as the P4 pro-
gram is compiled to fit the switch resource requirements,
the switch is able to run NetChain at line rate. In fact,

170 us

2350 us

9.7 us



Handle failures efficiently

34

a three-switch chain is able to provide up to 2 BQPS,
as denoted by NetChain(max). Our current prototype
support value size up to 128 bytes. Larger values can
be supported using more stages and using packet mirror-
ing/recirculation as discussed in §6.

Figure 9(b) shows the impact of store size. Similarly,
both systems are not affected by the store size in the eval-
uated range, and NetChain provides orders of magnitude
higher throughput. The store size is restricted by the al-
located total size (8MB in our prototype) and the value
size. The store size is large enough to be useful for coor-
dination services as discussed in §6.

Figure 9(c) shows the impact of write ratio. With read-
only workloads, ZooKeeper achieves 230 KQPS. But
even with a write ratio of 1%, its throughput drops to 140
KQPS. And when the write ratio is 100%, its throughput
drops to 27 KQPS. As for comparison, NetChain(4) con-
sistently achieves 82 MQPS. This is because NetChain
uses chain replication and each switch is able to process
both read and write queries at line rate. As the switches
in the evaluated chain [S0,S1,S2] process the same num-
ber of packets for both read and write queries, the total
throughput is not affected by the write ratio, which would
be different in more complex topologies. As we will
show in §8.3, NetChain has lower throughput for write
queries for large deployments, as write queries require
more hops than read queries.

Figure 9(d) shows the impact of packet loss rate. We
inject random packet loss rate to each switch, ranging
from 0.001% to 10%. The throughput of ZooKeeper
drops to 50 KQPS (3 KQPS) when the loss rate is 1%
(10%). As for comparison, NetChain(4) keeps around 82
MQPS for packet loss rate between 0.001% and 1%, and
only drops to 48 MPQS when the loss rate is 10%. The
reason is because ZooKeeper uses TCP for reliable trans-
mission which has a lot of overhead under high loss rate,
whereas NetChain simply uses UDP and lets the clients
retry a query upon packet loss. Although high packet
loss rate is unlikely to happen frequently in datacenters,
this experiment demonstrates that NetChain can provide
high throughput even under extreme scenarios.

8.2 Latency
We now evaluate the latency of NetChain. We sepa-
rate the read and write queries, and measure their laten-
cies under different throughputs. For NetChain, since
the switch-side processing delay is sub-microsecond, the
client-side delay dominates the query latency. In addi-
tion, as both read and write queries traverse the same
number of switches in the evaluated chain, NetChain has
the same latency for both reads and writes, as shown in
Figure 9(e). Because we implement NetChain clients
with DPDK to bypass the TCP/IP stack and the OS ker-
nel, NetChain incurs only 9.7 µs query latency. The la-

0 50 100 150 200 TiPe (s)
0
5

10
15
20
25

Th
ro

ug
hS

ut
(0

Q
P

S
)

failover failure recovery

(a) 1 Virtual Group.

0 50 100 150 200 TiPe (s)
0
5

10
15
20
25

Th
ro

ug
hS

ut
(0

Q
P

S
)

failover failure recovery

(b) 100 Virtual Groups.

Figure 10: Failure handling results. It shows the through-
put time series of one client server when one switch fails
in a four-switch testbed. NetChain has fast failover. By
using more virtual groups, NetChain provides smaller
throughput drops for failure recovery.

tency keeps at 9.7 µs even when all four severs are gen-
erating queries to the system at 82 MQPS (the solid line
of NetChain in the figure), and is expected to be not af-
fected by throughput until the system is saturated at 2
BQPS (the dotted line of NetChain in the figure).

As for comparison, ZooKeeper has a latency of 170
µs for read queries and 2350 µs for write queries at low
throughput. The latencies slightly go up before the sys-
tem is saturated (27 KQPS for writes and 230 KQPS for
reads), because servers do not have deterministic per-
query processing time as switch ASICs and the latency
is affected by the system load. Overall, NetChain pro-
vides orders of magnitude lower latency than ZooKeeper
at orders of magnitude higher throughput.

8.3 Scalability
We use simulations to evaluate the performance of
NetChain in large-scale deployments. We use standard
spine-leaf topologies. We assume each switch has 64
ports and has a throughput of 4 BQPS. Each leaf switch
is connected to 32 servers in its rack, and uses the other
32 ports to connect to spine switches. We assume the net-
work is non-blocking, i.e., the number of spine switches
is a half of that of leaf switches. We vary the network
from 6 switches (2 spines and 4 leafs) to 96 switches
(32 spines and 64 leafs). Figure 9(f) shows the max-
imum throughputs for read-only and write-only work-
loads. Both throughputs grow linearly, because in the
two-layer network, the average number of hops for a
query does not change under different network sizes.
The write throughput is lower than the read through-
put because a write query traverses more hops than a
read query. When the queries have mixed read and
write operations, the throughput curve will be between
NetChain(read) and NetChain(write).

reduce throughput drop
with virtual groups



Conclusion
Ø NetChain is an in-network coordination system that provides 

billions of operations per second with sub-RTT latencies

Ø Rethink distributed systems design
Ø Conventional wisdom: avoid coordination
Ø NetChain: lightning fast coordination with programmable switches

Ø Moore’s law is ending…
Ø Specialized processors for domain-specific workloads: GPU servers, 

FPGA servers, TPU servers…
Ø PISA servers: new generation of ultra-high performance systems for 

IO-heavy workloads enabled by PISA switches
35



36

Thanks!


