Resource Elasticity in Distributed Deep Learning

Andrew Or, Haoyu Zhang^{*}, Michael J. Freedman

Princeton University, *Google AI

MLSys 2020

Resource allocation today

Users rely on manual trial-and-error process to find resource efficient cluster size

Manual trial-and-error resource allocation

Cumbersome: difficult to estimate scaling behavior

Diverse hardware topologies, communication algorithm etc.

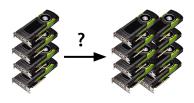
Time-consuming: each trial restarts entire program

Need to reload libraries, rebuild model, prepare input pipeline etc.

Can take minutes of device idle time

Static allocation: vulnerable to stragglers

3



Today, users often under- or over-allocate resources

Resource Elasticity in Distributed Deep Learning

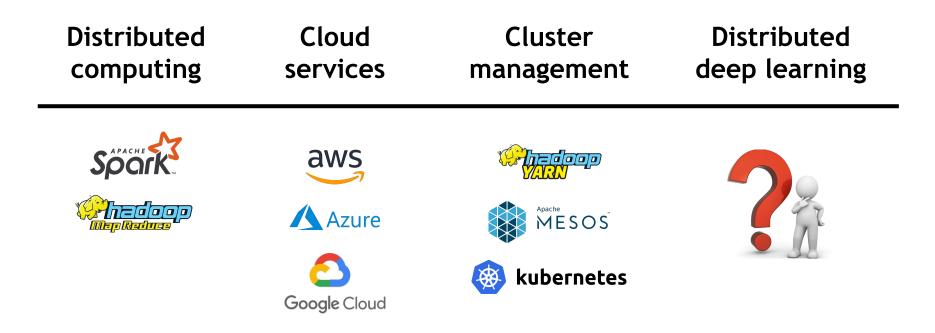
Autoscaling to dynamically search for a resource efficient cluster

Leads to shorter job completion times and lower costs

up to 45% reduction

up to 85.1% reduction in GPU time

Resource elasticity is not a new idea



Why is resource elasticity not adopted yet?

Hurdle #1: Lack of applicable scaling heuristics

Hurdle #2: Existing frameworks assume static allocation

Hurdle #3: How to scale the batch size?

Hurdle #1: Lack of applicable scaling heuristics

Existing heuristics are based on dynamic resource demands

X E.g. request more containers if CPU utilization exceeds X%

X E.g. kill a worker if it has been idle for X seconds

In deep learning workloads, however

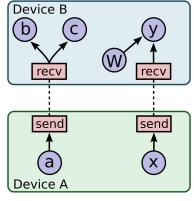
Resource utilization is typically consistent across batches, which are short

Workers are rarely idle

Hurdle #2: Existing frameworks assume static allocation

Models are structured as static graphs

Communication operations are hard-coded into these graphs PyTorch has "dynamic" graphs, but dynamic only in inputs



[Abadi et al., 2015]

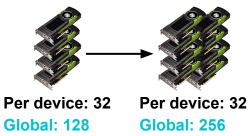
Synchronization primitives assume fixed # devices

E.g. TensorFlow's SyncReplicasOptimizer, MultiWorkerMirroredStrategy

Hurdle #3: How to scale the batch size?

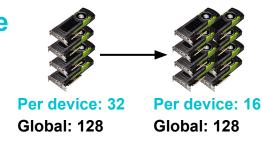
1) Fix per device batch size, vary global batch size

- Preserves per device efficiency
- Large batch sizes may compromise convergence behavior [Keskar et al., 2016; Goyal et al., 2017; Hoffer et al., 2017]



2) Fix global batch size, vary per device batch size

- Preserves convergence behavior
- Sacrifices per device efficiency and overall performance

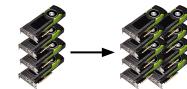


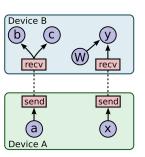
Why is resource elasticity not adopted yet?

Hurdle #1: Lack of applicable scaling heuristics

Hurdle #2: Existing frameworks assume static allocation

Hurdle #3: How to scale the **batch size**?





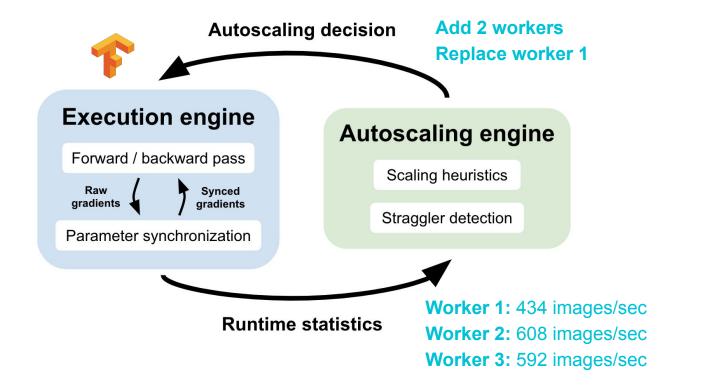
Soork

kubernetes

Autoscaling System

Scaling heuristics, integration, straggler mitigation

Autoscaling engine for distributed deep learning



Hurdle #1: Lack of applicable scaling heuristics

Design custom scaling heuristics based on:

```
1) Throughput scaling efficiency
```

```
2) Utility vs cost
```

. . .

Autoscaling engine can run with custom, pluggable heuristics

Scaling heuristics: Throughput scaling efficiency

Intuition: measure extra per worker throughput relative to existing per worker throughput

Num workers: 4 Throughput: 400 img/s

Num workers: 5 Throughput: 480 img/s

Throughput scaling efficiency $(S_{k,d}) = (480 - 400) / (400 / 4) = 0.8$

Scaling heuristics: Throughput scaling efficiency

Intuition: measure extra per worker throughput relative to existing per worker throughput

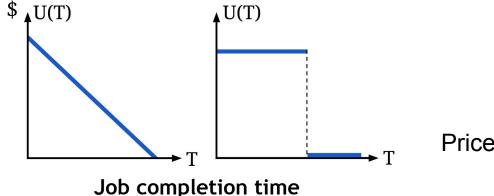
- $S_{k,d} = 1$ perfect scaling
- $S_{k,d} = 0$ no improvement
- $S_{k,d} < 0$ negative scaling

Throughput: 400 img/s \rightarrow 480 img/s Efficiency (*s*_{*k*,*d*}): (480 - 400) / (400 / 4) = 0.8

Scaling condition #1: $s_{k,d} > S, S \in [0,1]$

Scaling heuristics: Utility vs cost

Intuition: compare user-provided utility function to dollar cost of job



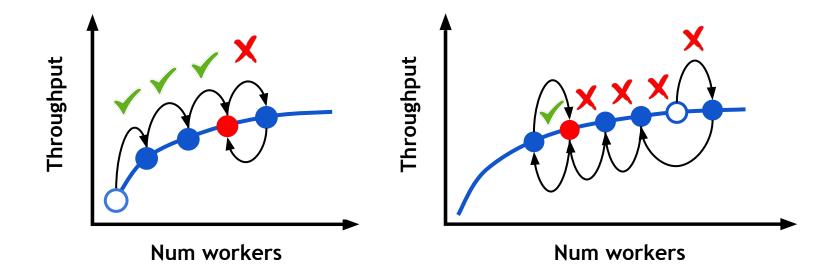
Cost C(k) =

Total compute time × Price per device per time unit

Scaling condition #2: $\Delta U > \Delta C$

Scaling in action

Find the latest point at which the scaling condition passes \checkmark



e.g. $s_{k,d} > S$

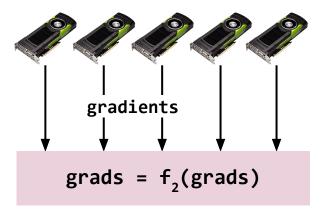
Hurdle #2: Existing frameworks assume static allocation

Give each worker the illusion of local training

Workers independently apply black-box function ${f f}$ that synchronizes gradients

Replace function when switching to new allocation

Portable across different frameworks 🗸



e.g. Horovod allreduce

Hurdle #3: How to scale the batch size?

User provides an upper batch size limit

Increase global batch size, fixing per device batch size, until limit

Finding an optimal batch size for arbitrary workloads is an open problem

[Hoffer et al., 2018; Shallue et al., 2018; Smith et al., 2018]

Straggler mitigation comes almost for free

Once we detect a straggler, replace it using the same mechanisms

Refer to paper for details of straggler detection

Evaluation

Job completion time, GPU time, idle time

Experiment setup

CPU cluster: 60 machines

16 Intel Xeon CPUs @ 2.6 GHz (960 total) 64GB memory

1 Gbps network

GPU cluster: 8 machines

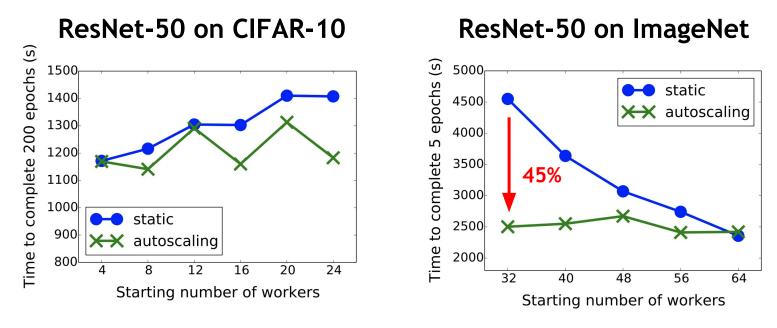
8 NVIDIA V100 GPUs (64 total)

64 Intel Xeon CPUs (2.2GHz)

250GB memory

16 Gbps network

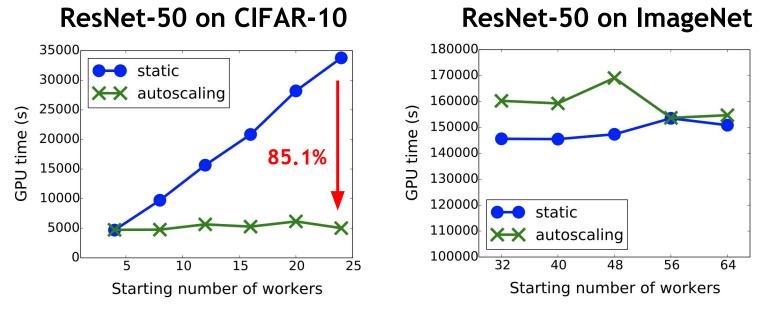
Autoscaling reduces job completion time



Avg reduction: 8.23%; Max: 16.0%

Avg reduction: 19.4%; Max: 45.0%

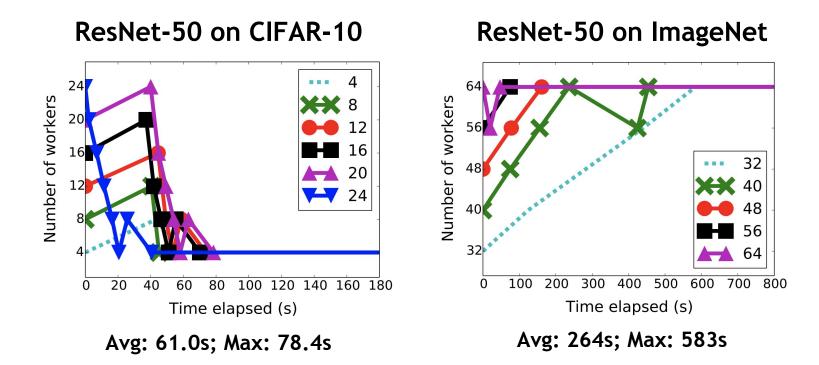
Autoscaling reduces GPU time



Avg reduction: 58.6%; Max: 85.1%

Avg increase: 7.39%; Max: 14.7%

Autoscaling finds target configuration quickly

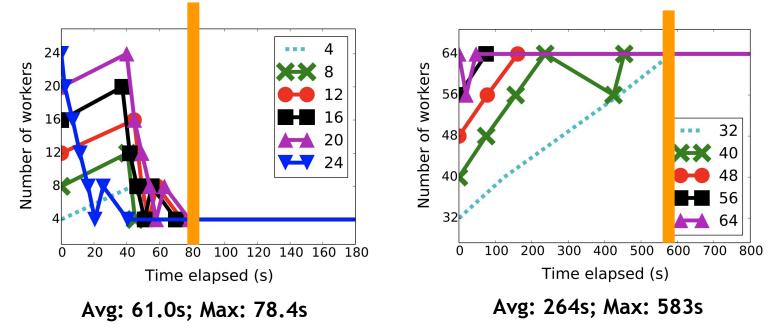


Autoscaling finds target configuration quickly

<6% of total time

<2% of total time

(train until convergence)



Autoscaling has short idle times

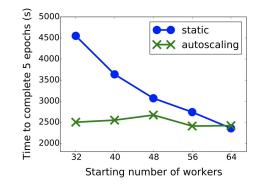
	CIFAR-10	ImageNet
autoscaling (+)	3.179	6.813
autoscaling (-)	2.612	4.376
checkpoint restart	72.756	81.186

Average idle time during transition (seconds)

Resource Elasticity in Distributed Deep Learning

Autoscaling to dynamically search for a resource efficient cluster

Leads to shorter job completion times and lower costs



up to 45% reduction

up to 85.1% reduction

in GPU time

